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• Making cause and effect relationships is at the basis ouf the human way of thinking

• Correlation is not causation:

Measuring dependencies between observational data is not enough to fully grasp the causal model

 Connect statistical dependencies and causation
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• Making cause and effect relationships is at the basis ouf the human way of thinking

• Correlation is not causation:

Measuring dependencies between observational data is not enough to fully grasp the causal model

 Connect statistical dependencies and causation

• Causation :

Variable 𝑋 causes variable 𝑌 if an intervention on 𝑋 (and only 𝑋) can change 𝑌

In the last decades, causal inference theory largely developed in e.g. [Pearl, 2009, Spirtes et al., 2000, 

Peters et al. 2017].
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Causality
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Causal Bayesian networks (CBN) defined by:

• Set of random variables 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑔) following distribution 𝒫

• A DAG 𝒢 = (𝒱, 𝐸), in which each node from 𝒱 is associated to a variable in 𝑿

 Arrows connecting two nodes stands for direct dependency

 No arrow between two nodes show either independence or conditional independence
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Causal Bayesian networks (CBN) defined by:

• Set of random variables 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑔) following distribution 𝒫

• A DAG 𝒢 = (𝒱, 𝐸), in which each node from 𝒱 is associated to a variable in 𝑿

 Arrows connecting two nodes stands for direct dependency

 No arrow between two nodes show either independence or conditional independence

Temporal priority property:

• A causal relationship oriented in a way such that a cause precedes its effect

 Causality asymmetrical in time
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Necessary notions



Disposition : Titre et contenu

Suppose the generative model of the system follows a Structural Causal Model (SCM):
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A simple example

Window causal graph

𝑿 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) a multivariate

time series

𝑋𝑡
1 = 𝑓1(𝑋𝑡−1

1 , 𝑋𝑡−1
2 , 𝑋𝑡−2

3 , 𝜖𝑡
1)

𝑋𝑡
2 = 𝑓2(𝑋𝑡−1

2 , 𝜖𝑡
2)

𝑋𝑡
3 = 𝑓3(𝑋𝑡−1

3 , 𝑋𝑡−1
4 , 𝜖𝑡

3)

𝑋𝑡
4 = 𝑓4(𝑋𝑡−1

4 , 𝜖𝑡
4)
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Suppose the generative model of the system follows a Structural Causal Model (SCM):
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A simple example

Window causal graph Summary causal graph

𝑿 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) a multivariate

time series

𝑋𝑡
1 = 𝑓1(𝑋𝑡−1

1 , 𝑋𝑡−1
2 , 𝑋𝑡−2

3 , 𝜖𝑡
1)

𝑋𝑡
2 = 𝑓2(𝑋𝑡−1

2 , 𝜖𝑡
2)

𝑋𝑡
3 = 𝑓3(𝑋𝑡−1

3 , 𝑋𝑡−1
4 , 𝜖𝑡

3)

𝑋𝑡
4 = 𝑓4(𝑋𝑡−1

4 , 𝜖𝑡
4)

Causal graph shows direct dependency between each random variables.

𝑋1

𝑋3𝑋2

𝑋4



Disposition : Titre et contenu

• Observations 𝑿 = 𝑋1, … , 𝑋𝑔 ∼ 𝒫

 Multivariate time series

 Joint probabilities generated by linear or non linear model

 No assumption on the probability distribution of the observed model

 All causes of each effect observed (causal sufficiency)
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• Observations 𝑿 = 𝑋1, … , 𝑋𝑔 ∼ 𝒫

 Multivariate time series

 Joint probabilities generated by linear or non linear model

 No assumption on the probability distribution of the observed model

 All causes of each effect observed (causal sufficiency)

Discover causal relationships between time series data

• Constraint-based causal discovery algorithm

 Need a conditional independence measure
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Framework
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• Input: completed non oriented graph formed from the data

• Outpout: a Completed Partially DAG (CPDAG)
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PC algorithm

From the sets of conditional independence of observed data, build the causal graph
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• Input: completed non oriented graph formed from the data

• Outpout: a Completed Partially DAG (CPDAG)

• Three different steps:

1. Discover the sets of conditional independence in 𝒢

 start with an empty conditional set  increase its size with the parents of the tested variables

2. Find 𝑣-structures and orient them

3. Use knowledge given in step 1 and 2 to finish to orient the graph (so called PC rules)
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PC algorithm

From the sets of conditional independence of observed data, build the causal graph
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• Input: completed non oriented graph formed from the data

• Outpout: a Completed Partially DAG (CPDAG)

• Three different steps:

1. Discover the sets of conditional independence in 𝒢

 start with an empty conditional set  increase its size with the parents of the tested variables

2. Find 𝑣-structures and orient them

3. Use knowledge given in step 1 and 2 to finish to orient the graph (so called PC rules)
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PC algorithm

From the sets of conditional independence of observed data, build the causal graph

Find a 

conditional

independence

test
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PMIME: Quantify direct and directional dependencies from stationary multivariate time series (kugiumtzis, 

2013)

• Based on information theory

 Restrict assumptions on the data 

• Built for multivariate time series

• Returns a bounded value

 Easier to interpret

 No additional statistical significance test
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Partial Mutual Information from Mixed Embedding
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PMIME: Quantify direct and directional dependencies from stationary multivariate time series (kugiumtzis, 

2013)

• Based on information theory

 Restrict assumptions on the data 

• Built for multivariate time series

• Returns a bounded value

 Easier to interpret

 No additional statistical significance test
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Partial Mutual Information from Mixed Embedding

Few parameters:

• Stopping criterion

• Maximal lag

• Estimation parameters
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Consider 𝑔 time series 𝑋, 𝑌 and 𝒁 = 𝑍1, … , 𝑍𝑔−2

• Build iteratively an embedding vector 𝒘𝑡, with lagged components from 𝑋, 𝑌 and 𝒁 that explain Y the

most

• Let 𝒘𝑥, 𝒘𝑦 , 𝒘𝒛 be the components of 𝑋 , 𝑌 and 𝒁 in the embedding vector 𝒘𝒕 and 𝑌𝑡
𝑇 =

(𝑌𝑡+1 , … , 𝑌𝑡+𝑇 ) the future of 𝑌
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Consider 𝑔 time series 𝑋, 𝑌 and 𝒁 = 𝑍1, … , 𝑍𝑔−2

• Build iteratively an embedding vector 𝒘𝑡, with lagged components from 𝑋, 𝑌 and 𝒁 that explain Y the

most

• Let 𝒘𝑥, 𝒘𝑦 , 𝒘𝒛 be the components of 𝑋 , 𝑌 and 𝒁 in the embedding vector 𝒘𝒕 and 𝑌𝑡
𝑇 =

(𝑌𝑡+1 , … , 𝑌𝑡+𝑇 ) the future of 𝑌

The effect of 𝑋 on 𝑌, conditional on 𝒁:

𝑅𝑋→𝑌|𝒁 =
𝐼(𝑌𝑡

𝑇 , 𝒘𝑥|𝒘𝑦, 𝒘𝒛)

𝐼(𝑌𝑡
𝑇;𝒘𝑡)

.

𝑅 bounded between 𝟎 and 𝟏
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Partial Mutual Information from Mixed Embedding
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Select the elements by the (conditional) mutual information 𝐼

 Add item to 𝒘𝒕 only if it strictly increases the information already included in 𝒘𝒕

• Define a maximal lag 𝜏max

• Set of all lagged components 𝓦 = (𝑋𝑡 , 𝑋𝑡−1 , … , 𝑋𝑡−𝜏max
, 𝑌𝑡 , 𝑌𝑡−1, … , 𝑍𝑡−𝜏max

𝑔−2
)
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PMIME : building the embedding vector
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Select the elements by the (conditional) mutual information 𝐼

 Add item to 𝒘𝒕 only if it strictly increases the information already included in 𝒘𝒕

• Define a maximal lag 𝜏max

• Set of all lagged components 𝓦 = (𝑋𝑡 , 𝑋𝑡−1 , … , 𝑋𝑡−𝜏max
, 𝑌𝑡 , 𝑌𝑡−1, … , 𝑍𝑡−𝜏max

𝑔−2
)

Principle: 
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PMIME : building the embedding vector

1𝑠𝑡 embedding cycle

𝑤𝑡
1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤)

𝒘𝑡
1 = (𝑤𝑡

1)

2𝑛𝑑 embedding cycle

𝑤𝑡
2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇 , 𝑤|𝒘𝑡
1)

𝒘𝑡
2 = (𝑤𝑡

1, 𝑤𝑡
2)

…

𝑗𝑡ℎ embedding cycle

𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗
)

𝑤𝑡
𝑗
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤|𝒘𝑡
𝑗−1

)𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗−1
)
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Select the elements by the (conditional) mutual information 𝐼

 Add item to 𝒘𝒕 only if it strictly increases the information already included in 𝒘𝒕

• Define a maximal lag 𝜏max

• Set of all lagged components 𝓦 = (𝑋𝑡 , 𝑋𝑡−1 , … , 𝑋𝑡−𝜏max
, 𝑌𝑡 , 𝑌𝑡−1, … , 𝑍𝑡−𝜏max

𝑔−2
)

Principle: 
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PMIME : building the embedding vector

1𝑠𝑡 embedding cycle

𝑤𝑡
1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤)

𝒘𝑡
1 = (𝑤𝑡

1)

2𝑛𝑑 embedding cycle

𝑤𝑡
2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇 , 𝑤|𝒘𝑡
1)

𝒘𝑡
2 = (𝑤𝑡

1, 𝑤𝑡
2)

…

𝑗𝑡ℎ embedding cycle

𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗
)

𝑤𝑡
𝑗
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤|𝒘𝑡
𝑗−1

)𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗−1
)

Stop at iteration 𝑗 if 

𝐼(𝑌𝑡
𝑇,𝑤𝑡

𝑗−1
)

𝐼(𝑌𝑡
𝑇,𝒘𝑡 )

> 𝐴
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Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time 
series.

 PC-PMIME a constraint based method

Major assumptions :

• Causal sufficiency

• Causal stationarity

• Faithfulness

• Stationary time series
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Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time 
series.

 PC-PMIME a constraint based method

Major assumptions :

• Causal sufficiency

• Causal stationarity

• Faithfulness

• Stationary time series

Causal relationships observed

at time 𝑡 remain the same at 

time 𝑡 + 𝜏
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Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time 
series.

 PC-PMIME a constraint based method

Major assumptions :

• Causal sufficiency

• Causal stationarity

• Faithfulness

• Stationary time series

𝑋 ⊥ 𝑌 | 𝑍 in 𝒫 ⇔ 𝑋 and 𝑌 d-seperated 𝑏𝑦 𝑍 in 𝒢
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PC-PMIME

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

PMIME in the bivariate 

case

A⫫B if 𝑅𝐴→𝐵 = 0

1. Start with a graph 𝒢 with all vertices connected

2. Remove edges between independent variables

3. For each couple (𝐴, 𝐵) linked by an edge and for

each 𝐶 having an edge linked to 𝐴 or B, remove

the edge 𝐴 − 𝐵 if 𝐴 ⫫ 𝐵 | 𝐶.

4. For each couple (𝐴, 𝐵) linked by an edge and for

each set {𝐶, 𝐷} where 𝐶 and 𝐷 are both adjacent

to A or both adjacent to 𝐵, remove the edge 𝐴 −
𝐵 if 𝐴 ⫫ 𝐵 | {𝐶, 𝐷} .

5. Go on augmenting the size of the conditioning

set until there is no (𝐴, 𝐵) with a sufficient

amount of adjacent nodes.
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PC-PMIME

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

PMIME in the bivariate 

case

A⫫B if 𝑅𝐴→𝐵 = 0

PMIME in the 

multivariate case : 

when a conditioning set 

is involved

A⫫B | C if  𝑅𝐴→𝐵|𝐶 = 0

Orient with asymmetry:

𝐴 → 𝐵 𝑖𝑓 𝑅𝐴→𝐵|𝐶 > 0

1. Start with a graph 𝒢 with all vertices connected

2. Remove edges between independent variables

3. For each couple (𝐴, 𝐵) linked by an edge and for

each 𝐶 having an edge linked to 𝐴 or B, remove

the edge 𝐴 − 𝐵 if 𝐴 ⫫ 𝐵 | 𝐶.

4. For each couple (𝐴, 𝐵) linked by an edge and for

each set {𝐶, 𝐷} where 𝐶 and 𝐷 are both adjacent

to A or both adjacent to 𝐵, remove the edge 𝐴 −
𝐵 if 𝐴 ⫫ 𝐵 | {𝐶, 𝐷} .

5. Go on augmenting the size of the conditioning

set until there is no (𝐴, 𝐵) with a sufficient

amount of adjacent nodes.
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Experiments

• Four basic causal structures simulated, from [Assaad et al. 2022]

• For each causal structure, 10 simulated datasets

• Linear auto-correlation for each variable and non-linear functions

between a variable and parents
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Experiments

• Four basic causal structures simulated, from [Assaad et al. 2022]

• For each causal structure, 10 simulated datasets

• Linear auto-correlation for each variable and non-linear functions

between a variable and parents

Example: a variable 𝑋𝑗 simulated with:

∀t > 0, 𝑋𝑡
𝑗
= 𝑎𝑡

𝑗
𝑋𝑡−1
𝑗

+ σ(𝑝,𝛾)𝑎𝑡−𝛾
𝑝

𝑓𝑝 𝑋𝑡−𝛾
𝑝

+ 0.1𝜀𝑡
𝑗

 𝛾 = {1,… , 𝜏𝑝 } and 𝑋𝑝 ∈ 𝑃𝑎 𝑋𝑗 , 𝒢

 𝑎𝑡
𝑝

random coefficients chosen in 𝒰 −1;−0,1] ∪ [0.1; 1 for 1 ≤ 𝑗 ≤ 𝑑

 𝜀𝑡
𝑔+1

~𝒩 0, 𝜎

 𝑓 a non-linear function drawn in the list [𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒, tanh, sin𝑒, cos𝑖𝑛𝑒]
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10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛
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Experiments
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10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛
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Experiments

𝐴 ≤ 0.01 more restrictive

𝐴 ≥ 0.1 more permissive



Disposition : Titre et contenu

10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛
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Experiments

Estimation of entropy by 

𝑘-nearest neighbors
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10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛

• Four other methods to compare with: 

 VarLiNGAM, PCMCI (Partial Correlation), Pairwise Granger Causality, DYNOTEARS

• Other methods exist but not tested here e.g. PCMCI derivatives, oCSE, MTE-MESS, Rhino…
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Experiments
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Results on simulations 

• To evaluate the method : 𝐹1-score

• No consideration of auto-correlation in the score
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Results on simulations
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Results on simulations

High score for large size of times series (𝑛 > 1000)

 Lack stability due to 𝑘-nn estimator
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• PC-PMIME shows very promising results on simulations

 Tests on real data

• Several limitations can be removed:

 better orientations of edges

 computing auto-correlation
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Conclusion and perspectives
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• PC-PMIME shows very promising results on simulations

 Tests on real data

• Several limitations can be removed:

 better orientations of edges

 computing auto-correlation

• Causal sufficiency is not realistic:

 Consider hidden counfounders in future work
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Conclusion and perspectives

𝑋 𝑌

𝐿

𝑍
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Thanks for listening

antonin.arsac@cea.fr

Université Paris-Saclay, 

CEA, List, F-91120, 

Palaiseau, France

mailto:antonin.arsac@cea.fr
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