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Causal discovery for time series with 
constraint-based model and PMIME measure
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• Making cause and effect relationships is at the basis ouf the human way of thinking

• Correlation is not causation:

Measuring dependencies between observational data is not enough to fully grasp the causal model

 Connect statistical dependencies and causation
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• Making cause and effect relationships is at the basis ouf the human way of thinking

• Correlation is not causation:

Measuring dependencies between observational data is not enough to fully grasp the causal model

 Connect statistical dependencies and causation

• Causation :

Variable 𝑋 causes variable 𝑌 if an intervention on 𝑋 (and only 𝑋) can change 𝑌

In the last decades, causal inference theory largely developed in e.g. [Pearl, 2009, Spirtes et al., 2000, 

Peters et al. 2017].
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Causality



Disposition : Titre et contenu

Causal Bayesian networks (CBN) defined by:

• Set of random variables 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑔) following distribution 𝒫

• A DAG 𝒢 = (𝒱, 𝐸), in which each node from 𝒱 is associated to a variable in 𝑿

 Arrows connecting two nodes stands for direct dependency

 No arrow between two nodes show either independence or conditional independence
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Causal Bayesian networks (CBN) defined by:

• Set of random variables 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑔) following distribution 𝒫

• A DAG 𝒢 = (𝒱, 𝐸), in which each node from 𝒱 is associated to a variable in 𝑿

 Arrows connecting two nodes stands for direct dependency

 No arrow between two nodes show either independence or conditional independence

Temporal priority property:

• A causal relationship oriented in a way such that a cause precedes its effect

 Causality asymmetrical in time
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Necessary notions
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Suppose the generative model of the system follows a Structural Causal Model (SCM):
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A simple example

Window causal graph

𝑿 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) a multivariate

time series

𝑋𝑡
1 = 𝑓1(𝑋𝑡−1

1 , 𝑋𝑡−1
2 , 𝑋𝑡−2

3 , 𝜖𝑡
1)

𝑋𝑡
2 = 𝑓2(𝑋𝑡−1

2 , 𝜖𝑡
2)

𝑋𝑡
3 = 𝑓3(𝑋𝑡−1

3 , 𝑋𝑡−1
4 , 𝜖𝑡

3)

𝑋𝑡
4 = 𝑓4(𝑋𝑡−1

4 , 𝜖𝑡
4)
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Suppose the generative model of the system follows a Structural Causal Model (SCM):
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A simple example

Window causal graph Summary causal graph

𝑿 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) a multivariate

time series

𝑋𝑡
1 = 𝑓1(𝑋𝑡−1

1 , 𝑋𝑡−1
2 , 𝑋𝑡−2

3 , 𝜖𝑡
1)

𝑋𝑡
2 = 𝑓2(𝑋𝑡−1

2 , 𝜖𝑡
2)

𝑋𝑡
3 = 𝑓3(𝑋𝑡−1

3 , 𝑋𝑡−1
4 , 𝜖𝑡

3)

𝑋𝑡
4 = 𝑓4(𝑋𝑡−1

4 , 𝜖𝑡
4)

Causal graph shows direct dependency between each random variables.

𝑋1

𝑋3𝑋2

𝑋4
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• Observations 𝑿 = 𝑋1, … , 𝑋𝑔 ∼ 𝒫

 Multivariate time series

 Joint probabilities generated by linear or non linear model

 No assumption on the probability distribution of the observed model

 All causes of each effect observed (causal sufficiency)
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• Observations 𝑿 = 𝑋1, … , 𝑋𝑔 ∼ 𝒫

 Multivariate time series

 Joint probabilities generated by linear or non linear model

 No assumption on the probability distribution of the observed model

 All causes of each effect observed (causal sufficiency)

Discover causal relationships between time series data

• Constraint-based causal discovery algorithm

 Need a conditional independence measure
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Framework
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• Input: completed non oriented graph formed from the data

• Outpout: a Completed Partially DAG (CPDAG)
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PC algorithm

From the sets of conditional independence of observed data, build the causal graph
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• Input: completed non oriented graph formed from the data

• Outpout: a Completed Partially DAG (CPDAG)

• Three different steps:

1. Discover the sets of conditional independence in 𝒢

 start with an empty conditional set  increase its size with the parents of the tested variables

2. Find 𝑣-structures and orient them

3. Use knowledge given in step 1 and 2 to finish to orient the graph (so called PC rules)
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From the sets of conditional independence of observed data, build the causal graph
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• Input: completed non oriented graph formed from the data

• Outpout: a Completed Partially DAG (CPDAG)

• Three different steps:

1. Discover the sets of conditional independence in 𝒢

 start with an empty conditional set  increase its size with the parents of the tested variables

2. Find 𝑣-structures and orient them

3. Use knowledge given in step 1 and 2 to finish to orient the graph (so called PC rules)

17/04/2023Antonin Arsac 15

PC algorithm

From the sets of conditional independence of observed data, build the causal graph

Find a 

conditional

independence

test
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PMIME: Quantify direct and directional dependencies from stationary multivariate time series (kugiumtzis, 

2013)

• Based on information theory

 Restrict assumptions on the data 

• Built for multivariate time series

• Returns a bounded value

 Easier to interpret

 No additional statistical significance test
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Partial Mutual Information from Mixed Embedding
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PMIME: Quantify direct and directional dependencies from stationary multivariate time series (kugiumtzis, 

2013)

• Based on information theory

 Restrict assumptions on the data 

• Built for multivariate time series

• Returns a bounded value

 Easier to interpret

 No additional statistical significance test
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Partial Mutual Information from Mixed Embedding

Few parameters:

• Stopping criterion

• Maximal lag

• Estimation parameters
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Consider 𝑔 time series 𝑋, 𝑌 and 𝒁 = 𝑍1, … , 𝑍𝑔−2

• Build iteratively an embedding vector 𝒘𝑡, with lagged components from 𝑋, 𝑌 and 𝒁 that explain Y the

most

• Let 𝒘𝑥, 𝒘𝑦 , 𝒘𝒛 be the components of 𝑋 , 𝑌 and 𝒁 in the embedding vector 𝒘𝒕 and 𝑌𝑡
𝑇 =

(𝑌𝑡+1 , … , 𝑌𝑡+𝑇 ) the future of 𝑌
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Consider 𝑔 time series 𝑋, 𝑌 and 𝒁 = 𝑍1, … , 𝑍𝑔−2

• Build iteratively an embedding vector 𝒘𝑡, with lagged components from 𝑋, 𝑌 and 𝒁 that explain Y the

most

• Let 𝒘𝑥, 𝒘𝑦 , 𝒘𝒛 be the components of 𝑋 , 𝑌 and 𝒁 in the embedding vector 𝒘𝒕 and 𝑌𝑡
𝑇 =

(𝑌𝑡+1 , … , 𝑌𝑡+𝑇 ) the future of 𝑌

The effect of 𝑋 on 𝑌, conditional on 𝒁:

𝑅𝑋→𝑌|𝒁 =
𝐼(𝑌𝑡

𝑇 , 𝒘𝑥|𝒘𝑦, 𝒘𝒛)

𝐼(𝑌𝑡
𝑇;𝒘𝑡)

.

𝑅 bounded between 𝟎 and 𝟏
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Partial Mutual Information from Mixed Embedding
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Select the elements by the (conditional) mutual information 𝐼

 Add item to 𝒘𝒕 only if it strictly increases the information already included in 𝒘𝒕

• Define a maximal lag 𝜏max

• Set of all lagged components 𝓦 = (𝑋𝑡 , 𝑋𝑡−1 , … , 𝑋𝑡−𝜏max
, 𝑌𝑡 , 𝑌𝑡−1, … , 𝑍𝑡−𝜏max

𝑔−2
)
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PMIME : building the embedding vector
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Select the elements by the (conditional) mutual information 𝐼

 Add item to 𝒘𝒕 only if it strictly increases the information already included in 𝒘𝒕

• Define a maximal lag 𝜏max

• Set of all lagged components 𝓦 = (𝑋𝑡 , 𝑋𝑡−1 , … , 𝑋𝑡−𝜏max
, 𝑌𝑡 , 𝑌𝑡−1, … , 𝑍𝑡−𝜏max

𝑔−2
)

Principle: 
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PMIME : building the embedding vector

1𝑠𝑡 embedding cycle

𝑤𝑡
1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤)

𝒘𝑡
1 = (𝑤𝑡

1)

2𝑛𝑑 embedding cycle

𝑤𝑡
2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇 , 𝑤|𝒘𝑡
1)

𝒘𝑡
2 = (𝑤𝑡

1, 𝑤𝑡
2)

…

𝑗𝑡ℎ embedding cycle

𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗
)

𝑤𝑡
𝑗
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤|𝒘𝑡
𝑗−1

)𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗−1
)
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Select the elements by the (conditional) mutual information 𝐼

 Add item to 𝒘𝒕 only if it strictly increases the information already included in 𝒘𝒕

• Define a maximal lag 𝜏max

• Set of all lagged components 𝓦 = (𝑋𝑡 , 𝑋𝑡−1 , … , 𝑋𝑡−𝜏max
, 𝑌𝑡 , 𝑌𝑡−1, … , 𝑍𝑡−𝜏max

𝑔−2
)

Principle: 
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PMIME : building the embedding vector

1𝑠𝑡 embedding cycle

𝑤𝑡
1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤)

𝒘𝑡
1 = (𝑤𝑡

1)

2𝑛𝑑 embedding cycle

𝑤𝑡
2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇 , 𝑤|𝒘𝑡
1)

𝒘𝑡
2 = (𝑤𝑡

1, 𝑤𝑡
2)

…

𝑗𝑡ℎ embedding cycle

𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗
)

𝑤𝑡
𝑗
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑤∈𝑾 𝐼(𝑌𝑡

𝑇, 𝑤|𝒘𝑡
𝑗−1

)𝒘𝑡
𝑗
= (𝑤𝑡

1, 𝑤𝑡
2, … , 𝑤𝑡

𝑗−1
)

Stop at iteration 𝑗 if 

𝐼(𝑌𝑡
𝑇,𝑤𝑡

𝑗−1
)

𝐼(𝑌𝑡
𝑇,𝒘𝑡 )

> 𝐴
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Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time 
series.

 PC-PMIME a constraint based method

Major assumptions :

• Causal sufficiency

• Causal stationarity

• Faithfulness

• Stationary time series
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Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time 
series.

 PC-PMIME a constraint based method

Major assumptions :

• Causal sufficiency

• Causal stationarity

• Faithfulness

• Stationary time series

Causal relationships observed

at time 𝑡 remain the same at 

time 𝑡 + 𝜏
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Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time 
series.

 PC-PMIME a constraint based method

Major assumptions :

• Causal sufficiency

• Causal stationarity

• Faithfulness

• Stationary time series

𝑋 ⊥ 𝑌 | 𝑍 in 𝒫 ⇔ 𝑋 and 𝑌 d-seperated 𝑏𝑦 𝑍 in 𝒢
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PC-PMIME

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

PMIME in the bivariate 

case

A⫫B if 𝑅𝐴→𝐵 = 0

1. Start with a graph 𝒢 with all vertices connected

2. Remove edges between independent variables

3. For each couple (𝐴, 𝐵) linked by an edge and for

each 𝐶 having an edge linked to 𝐴 or B, remove

the edge 𝐴 − 𝐵 if 𝐴 ⫫ 𝐵 | 𝐶.

4. For each couple (𝐴, 𝐵) linked by an edge and for

each set {𝐶, 𝐷} where 𝐶 and 𝐷 are both adjacent

to A or both adjacent to 𝐵, remove the edge 𝐴 −
𝐵 if 𝐴 ⫫ 𝐵 | {𝐶, 𝐷} .

5. Go on augmenting the size of the conditioning

set until there is no (𝐴, 𝐵) with a sufficient

amount of adjacent nodes.
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PC-PMIME

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

PMIME in the bivariate 

case

A⫫B if 𝑅𝐴→𝐵 = 0

PMIME in the 

multivariate case : 

when a conditioning set 

is involved

A⫫B | C if  𝑅𝐴→𝐵|𝐶 = 0

Orient with asymmetry:

𝐴 → 𝐵 𝑖𝑓 𝑅𝐴→𝐵|𝐶 > 0

1. Start with a graph 𝒢 with all vertices connected

2. Remove edges between independent variables

3. For each couple (𝐴, 𝐵) linked by an edge and for

each 𝐶 having an edge linked to 𝐴 or B, remove

the edge 𝐴 − 𝐵 if 𝐴 ⫫ 𝐵 | 𝐶.

4. For each couple (𝐴, 𝐵) linked by an edge and for

each set {𝐶, 𝐷} where 𝐶 and 𝐷 are both adjacent

to A or both adjacent to 𝐵, remove the edge 𝐴 −
𝐵 if 𝐴 ⫫ 𝐵 | {𝐶, 𝐷} .

5. Go on augmenting the size of the conditioning

set until there is no (𝐴, 𝐵) with a sufficient

amount of adjacent nodes.
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Experiments

• Four basic causal structures simulated, from [Assaad et al. 2022]

• For each causal structure, 10 simulated datasets

• Linear auto-correlation for each variable and non-linear functions

between a variable and parents
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Experiments

• Four basic causal structures simulated, from [Assaad et al. 2022]

• For each causal structure, 10 simulated datasets

• Linear auto-correlation for each variable and non-linear functions

between a variable and parents

Example: a variable 𝑋𝑗 simulated with:

∀t > 0, 𝑋𝑡
𝑗
= 𝑎𝑡

𝑗
𝑋𝑡−1
𝑗

+ σ(𝑝,𝛾)𝑎𝑡−𝛾
𝑝

𝑓𝑝 𝑋𝑡−𝛾
𝑝

+ 0.1𝜀𝑡
𝑗

 𝛾 = {1,… , 𝜏𝑝 } and 𝑋𝑝 ∈ 𝑃𝑎 𝑋𝑗 , 𝒢

 𝑎𝑡
𝑝

random coefficients chosen in 𝒰 −1;−0,1] ∪ [0.1; 1 for 1 ≤ 𝑗 ≤ 𝑑

 𝜀𝑡
𝑔+1

~𝒩 0, 𝜎

 𝑓 a non-linear function drawn in the list [𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒, tanh, sin𝑒, cos𝑖𝑛𝑒]
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10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛
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10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛
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Experiments

𝐴 ≤ 0.01 more restrictive

𝐴 ≥ 0.1 more permissive
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10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛
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Experiments

Estimation of entropy by 

𝑘-nearest neighbors
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10 datasets of size n ∈ 𝑁 = [125, 250, 500, 1000, 2000, 4000].

In PC-PMIME :

• Maximal lag considered: 𝜏𝑚𝑎𝑥 = 4

• Threshold of the stopping criterion: 𝐴 = 0.03

• Number of nearest neighbors: 𝑘 = 0.1𝑛

• Four other methods to compare with: 

 VarLiNGAM, PCMCI (Partial Correlation), Pairwise Granger Causality, DYNOTEARS

• Other methods exist but not tested here e.g. PCMCI derivatives, oCSE, MTE-MESS, Rhino…
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Experiments
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Results on simulations 

• To evaluate the method : 𝐹1-score

• No consideration of auto-correlation in the score
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Results on simulations
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Results on simulations

High score for large size of times series (𝑛 > 1000)

 Lack stability due to 𝑘-nn estimator
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• PC-PMIME shows very promising results on simulations

 Tests on real data

• Several limitations can be removed:

 better orientations of edges

 computing auto-correlation
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Conclusion and perspectives
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• PC-PMIME shows very promising results on simulations

 Tests on real data

• Several limitations can be removed:

 better orientations of edges

 computing auto-correlation

• Causal sufficiency is not realistic:

 Consider hidden counfounders in future work
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Conclusion and perspectives

𝑋 𝑌

𝐿

𝑍
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Thanks for listening

antonin.arsac@cea.fr

Université Paris-Saclay, 

CEA, List, F-91120, 

Palaiseau, France

mailto:antonin.arsac@cea.fr


Disposition : Titre et contenu

[Assaad, 2022]  Assaad, C. K., Devijver, E., & Gaussier, E. (2022). Survey and evaluation of causal discovery methods for time series. Journal of 
Artificial Intelligence Research 73,767–819.

[Kugiumtzis, 2013]  Kugiumtzis, D. (2013). Direct-coupling information measure from nonuniform embedding. Physical Review E, 87(6), 062918.

[Pearl, 2009] Pearl, J. (2009). Causality. Cambridge university press.

[Peters et al. 2017] Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: foundations and learning algorithms. The MIT 
Press.

[Spirtes et al., 2000] Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and search. MIT press.

PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time 
series datasets. Sci. Adv. 5, eaau4996 (2019).

VarLiNGAM: A. Hyvärinen, K. Zhang, S. Shimizu, and P. O. Hoyer. Estimation of a structural vector autoregression model using non-
Gaussianity. Journal of Machine Learning Research, 11: 1709-1731, 2010.

Dynotears: Pamfil, R., Sriwattanaworachai, N., Desai, S., et al. Dynotears : Structure learning from time-series data. In International Conference 
on Artificial Intelligence and Statistics (2020), PMLR, pp. 1595–1605.

17/04/2023Antonin Arsac 40

References


