

Causal discovery for time series with constraint-based model and PMIME measure

Antonin Arsac, Aurore Lomet, Jean-Philippe Poli

Context

Cea Antonin Arsac

Context

cea

Causality

- Making cause and effect relationships is at the basis ouf the human way of thinking
- Correlation is not causation:

Measuring dependencies between observational data is not enough to fully grasp the causal model

 \rightarrow Connect statistical dependencies and causation

Causality

- Making cause and effect relationships is at the basis ouf the human way of thinking
- Correlation is not causation:

Measuring dependencies between observational data is not enough to fully grasp the causal model

 \rightarrow Connect statistical dependencies and causation

• Causation :

Variable X causes variable Y if an intervention on X (and only X) can change Y

In the last decades, **causal inference** theory largely developed in *e.g.* [Pearl, 2009, Spirtes et al., 2000, Peters et al. 2017].

5

Necessary notions

Causal Bayesian networks (CBN) defined by:

- Set of random variables $X = (X^1, X^2, ..., X^g)$ following distribution \mathcal{P}
- A DAG $\mathcal{G} = (\mathcal{V}, E)$, in which each node from \mathcal{V} is associated to a variable in **X**
 - Arrows connecting two nodes stands for direct dependency
 - > No arrow between two nodes show either independence or conditional independence

Necessary notions

Causal Bayesian networks (CBN) defined by:

- Set of random variables $X = (X^1, X^2, ..., X^g)$ following distribution \mathcal{P}
- A DAG $\mathcal{G} = (\mathcal{V}, E)$, in which each node from \mathcal{V} is associated to a variable in **X**
 - > Arrows connecting two nodes stands for direct dependency
 - > No arrow between two nodes show either independence or conditional independence

Temporal priority property:

- A causal relationship oriented in a way such that a cause precedes its effect
 - Causality asymmetrical in time

A simple example

Suppose the generative model of the system follows a Structural Causal Model (SCM):

 $X = (X^1, X^2, X^3, X^4)$ a multivariate time series

Window causal graph

A simple example

Suppose the generative model of the system follows a Structural Causal Model (SCM):

Window causal graph

Summary causal graph

Causal graph shows direct dependency between each random variables.

Framework

- Observations $X = (X^1, ..., X^g) \sim \mathcal{P}$
 - > Multivariate time series
 - > Joint probabilities generated by linear or non linear model
 - > No assumption on the probability distribution of the observed model
 - > All causes of each effect observed (causal sufficiency)

Framework

- Observations $X = (X^1, ..., X^g) \sim \mathcal{P}$
 - Multivariate time series
 - > Joint probabilities generated by linear or non linear model
 - > No assumption on the probability distribution of the observed model
 - > All causes of each effect observed (causal sufficiency)

Discover causal relationships between time series data

- Constraint-based causal discovery algorithm
 - Need a conditional independence measure

PC algorithm

From the sets of conditional independence of observed data, build the causal graph

- **Input:** completed non oriented graph formed from the data
- **Outpout:** a Completed Partially DAG (CPDAG)

PC algorithm

From the sets of conditional independence of observed data, build the causal graph

- **Input:** completed non oriented graph formed from the data
- **Outpout:** a Completed Partially DAG (CPDAG)
- Three different steps:
- 1. Discover the sets of conditional independence in \mathcal{G}
 - > start with an empty conditional set \rightarrow increase its size with the parents of the tested variables
- 2. Find *v*-structures and orient them
- 3. Use knowledge given in step 1 and 2 to finish to orient the graph (so called PC rules)

PC algorithm

From the sets of conditional independence of observed data, build the causal graph

- **Input:** completed non oriented graph formed from the data
- **Outpout:** a Completed Partially DAG (CPDAG)
- Three different steps:
- 1. Discover the sets of conditional independence in ${\cal G}$
 - > start with an empty conditional set \rightarrow increase its size with the parents of the tested variables
- 2. Find *v*-structures and orient them
- 3. Use knowledge given in step 1 and 2 to finish to orient the graph (so called PC rules)

PMIME: Quantify **direct** and **directional** dependencies from stationary multivariate time series (kugiumtzis, 2013)

- Based on information theory
 - Restrict assumptions on the data
- Built for multivariate time series
- Returns a bounded value
 - Easier to interpret
 - No additional statistical significance test

PMIME: Quantify **direct** and **directional** dependencies from stationary multivariate time series (kugiumtzis, 2013)

- Based on information theory
 - Restrict assumptions on the data
- Built for multivariate time series
- Returns a bounded value
 - Easier to interpret
 - No additional statistical significance test

Few parameters:

- Stopping criterion
- Maximal lag
- Estimation parameters

Consider g time series X, Y and $\mathbf{Z} = (Z^1, ..., Z^{g-2})$

- Build iteratively an embedding vector w_t, with lagged components from X, Y and Z that explain Y the most
- Let w^x, w^y, w^z be the components of X, Y and Z in the embedding vector w_t and $Y_t^T = (Y_{t+1}, ..., Y_{t+T})$ the future of Y

Consider g time series X, Y and $\mathbf{Z} = (Z^1, ..., Z^{g-2})$

- Build iteratively an embedding vector w_t, with lagged components from X, Y and Z that explain Y the most
- Let w^x, w^y, w^z be the components of X, Y and Z in the embedding vector w_t and $Y_t^T = (Y_{t+1}, ..., Y_{t+T})$ the future of Y

The effect of *X* on *Y*, conditional on *Z*:

$$R_{X \to Y|Z} = \frac{I(Y_t^T, \boldsymbol{w}^X | \boldsymbol{w}^y, \boldsymbol{w}^z)}{I(Y_t^T; \boldsymbol{w}_t)}.$$

R bounded between 0 and 1

PMIME : building the embedding vector

Select the elements by the (conditional) mutual information I

 \rightarrow Add item to w_t only if it strictly increases the information already included in w_t

- Define a maximal lag $\tau_{\rm max}$
- Set of all lagged components $\mathcal{W} = (X_t, X_{t-1}, \dots, X_{t-\tau_{\max}}, Y_t, Y_{t-1}, \dots, Z_{t-\tau_{\max}}^{g-2})$

PMIME : building the embedding vector

Select the elements by the (conditional) mutual information I

 \rightarrow Add item to w_t only if it strictly increases the information already included in w_t

- Define a maximal lag $\tau_{\rm max}$
- Set of all lagged components $\mathcal{W} = (X_t, X_{t-1}, \dots, X_{t-\tau_{\max}}, Y_t, Y_{t-1}, \dots, Z_{t-\tau_{\max}}^{g-2})$

Principle:

PMIME : building the embedding vector

Select the elements by the (conditional) mutual information I

 \rightarrow Add item to w_t only if it strictly increases the information already included in w_t

- Define a maximal lag $\tau_{\rm max}$
- Set of all lagged components $\mathcal{W} = (X_t, X_{t-1}, \dots, X_{t-\tau_{\max}}, Y_t, Y_{t-1}, \dots, Z_{t-\tau_{\max}}^{g-2})$

Principle:

Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

PC-PMIME a constraint based method

Major assumptions :

- Causal sufficiency
- Causal stationarity
- Faithfulness
- Stationary time series

Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

> PC-PMIME a constraint based method

- Faithfulness
- Stationary time series

Proposed approach

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

> PC-PMIME a constraint based method

Major assumptions :

- Causal sufficiency
- Causal stationarity

 $X \perp Y \mid Z \text{ in } \mathcal{P} \iff X \text{ and } Y \text{ } d\text{-seperated by } Z \text{ in } \mathcal{G}$

- Faithfulness
- Stationary time series

PC-PMIME

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

- 1. Start with a graph G with all vertices connected
- 2. Remove edges between independent variables
- 3. For each couple (A, B) linked by an edge and for each *C* having an edge linked to *A* or B, remove the edge A - B if $A \perp B \mid C$.
- 4. For each couple (A, B) linked by an edge and for each set $\{C, D\}$ where *C* and *D* are both adjacent to A or both adjacent to *B*, remove the edge A - B if $A \perp B \mid \{C, D\}$.
- 5. Go on augmenting the size of the conditioning set until there is no (A, B) with a sufficient amount of adjacent nodes.

PC-PMIME

Merging PC, a causal discovery algorithm, with PMIME, a measure of direct links between time series.

- Four basic causal structures simulated, from [Assaad et al. 2022]
- For each causal structure, 10 simulated datasets
- Linear auto-correlation for each variable and non-linear functions between a variable and parents

- Four basic causal structures simulated, from [Assaad et al. 2022]
- For each causal structure, 10 simulated datasets
- Linear auto-correlation for each variable and non-linear functions between a variable and parents

Example: a variable X^{j} simulated with:

$$\forall t > 0, \quad X_t^j = a_t^j X_{t-1}^j + \sum_{(p,\gamma)} a_{t-\gamma}^p f_p(X_{t-\gamma}^p) + 0.1\varepsilon_t^j$$

- $\gamma = \{1, \dots, \tau_p\} \text{ and } X^p \in Pa(X^j, \mathcal{G})$
- a_t^p random coefficients chosen in $\mathcal{U}([-1; -0, 1] \cup [0.1; 1])$ for $1 \le j \le d$
- $\varepsilon_t^{g+1} \sim \mathcal{N}(0, \sigma)$
- *f* a non-linear function drawn in the list [*absolute value*, tanh, sine, cosine]

10 datasets of size $n \in N = [125, 250, 500, 1000, 2000, 4000]$.

In PC-PMIME :

- Maximal lag considered: $\tau_{max} = 4$
- Threshold of the stopping criterion: A = 0.03
- Number of nearest neighbors: k = 0.1n

10 datasets of size $n \in N = [125, 250, 500, 1000, 2000, 4000]$.

In PC-PMIME :

- Maximal lag considered: $\tau_{max} = 4$
- Threshold of the stopping criterion: A = 0.03
- Number of nearest neighbors: k = 0.1n

 $A \leq 0.01$ more restrictive $A \geq 0.1$ more permissive

10 datasets of size $n \in N = [125, 250, 500, 1000, 2000, 4000]$.

In PC-PMIME :

- Maximal lag considered: $\tau_{max} = 4$
- Threshold of the stopping criterion: A = 0.03
- Number of nearest neighbors: k = 0.1n

Estimation of entropy by k-nearest neighbors

10 datasets of size $n \in N = [125, 250, 500, 1000, 2000, 4000]$.

In PC-PMIME :

- Maximal lag considered: $\tau_{max} = 4$
- Threshold of the stopping criterion: A = 0.03
- Number of nearest neighbors: k = 0.1n
- Four other methods to compare with:
 - > VarLiNGAM, PCMCI (Partial Correlation), Pairwise Granger Causality, DYNOTEARS
- Other methods exist but not tested here *e.g.* PCMCI derivatives, oCSE, MTE-MESS, Rhino...

Results on simulations

- To evaluate the method : *F*1-score
- No consideration of auto-correlation in the score

Results on simulations

Results on simulations

High score for large size of times series (n > 1000)

 \rightarrow Lack stability due to *k*-nn estimator

Conclusion and perspectives

- PC-PMIME shows very promising results on simulations
 - Tests on real data

- Several limitations can be removed:
 - better orientations of edges
 - computing auto-correlation

Conclusion and perspectives

- PC-PMIME shows very promising results on simulations ٠
 - Tests on real data

- Several limitations can be removed: •
 - better orientations of edges
 - computing auto-correlation

- Causal sufficiency is not realistic: ٠
 - Consider hidden counfounders in future work \geq

Thanks for listening

antonin.arsac@cea.fr

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

References

[Assaad, 2022] Assaad, C. K., Devijver, E., & Gaussier, E. (2022). Survey and evaluation of causal discovery methods for time series. Journal of Artificial Intelligence Research 73,767–819.

[Kugiumtzis, 2013] Kugiumtzis, D. (2013). Direct-coupling information measure from nonuniform embedding. *Physical Review E*, 87(6), 062918.

[Pearl, 2009] Pearl, J. (2009). Causality. Cambridge university press.

[Peters et al. 2017] Peters, J., Janzing, D., & Schölkopf, B. (2017). *Elements of causal inference: foundations and learning algorithms*. The MIT Press.

[Spirtes et al., 2000] Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, prediction, and search. MIT press.

- **PCMCI**: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019).
- VarLiNGAM: A. Hyvärinen, K. Zhang, S. Shimizu, and P. O. Hoyer. Estimation of a structural vector autoregression model using non-Gaussianity. Journal of Machine Learning Research, 11: 1709-1731, 2010.
- **Dynotears**: Pamfil, R., Sriwattanaworachai, N., Desai, S., et al. Dynotears : Structure learning from time-series data. In International Conference on Artificial Intelligence and Statistics (2020), PMLR, pp. 1595–1605.