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Motivation

Common deep learning approaches
struggle performing complex tasks that
are intuitive for humans (e.g. action
recognition) [Wang and Gupta, 2018].

To approach machines to human
cognition, [Lake et al., 2017] suggest the
following learning outcomes:

1 Harness compositionality in data.

2 Build causal models of the world.

3 Ground learning in intuitive physics
and human behaviour.
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Example: Causal discovery in videos

• Objective: Causal discovery in videos (in the wild)

• Solution: Interpreting the scene as a composition of N time series
1 Unsupervised feature extraction (region proposals, keypoints, etc)
2 Causal inference across samples

Causal
Inference
Method

Carles Balsells – – 5/26
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Causal discovery in conditionally stationary time series
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Causal discovery in time series

• Mainly based on stationary time series
• Non-temporal identifiability → Temporal setting
• Granger causality (no instantaneous effects)
• Amortised causal discovery (ACD)

t=1 t=2 t=3 t=4

• Non-stationary time series
• Heterogeneous data (distribution shifts but invariant full time graph)
• SSMs with time-dependent effects (linear)
• FCMs with time-dependent effects (GP regression)
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Causal discovery from conditionally stationary time series
Idea: Introduce categorical variables (states), that control the causal effects.

• Previous approaches consider the summary graph.
t=1 t=2 t=3 t=4

−−−−−−−−−→

• Definition 1: Conditional summary graph
G1:K = {Gk = {V, Ek} : 1 ≤ k ≤ K}, V = {x1, . . . , xN}.

xti → xt+1
i , sti = k =⇒ xi → xj ∈ Ek
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Causal discovery from conditionally stationary time series

Idea: Introduce categorical variables (states), that control the causal effects.{
{xti, sti}Ni=1

}T
t=1

∼ D, xti ∈ Rd, sti ∈ {1, . . . ,K}

• Assumptions:
1 Causal sufficiency: all variables are observed xti ∈ V1:T .
2 States are observed {sti : 1 ≤ t ≤ T, 1 ≤ i ≤ N}.
3 First-order Markov setting.

4 Additive noise model xt+1
j = fj

(
PA(xtj)

)
+ εtj , PA(xtj) =

(
PA1

j

)t−1
.

5 At time t, the states control the causal structure: PA(xtj) = (PA1
j |st−1)t−1.

• Model:
xtj = f st−1

j

(
(PA1

j |st−1)t−1
)
+ ϵtj , (1)

PA1
j |st−1 = {xi : xj ∈ Ci(s

t−1
i ), 1 ≤ i ≤ N}, (2)

PA(xtj), generally not invariant in time

Carles Balsells – – 9/26
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Causal discovery from conditionally stationary time series

xti → xt+1
i , sti = k =⇒ xi → xj ∈ Ek

More informative and compact causal representation.
• Theorem 1: Under the following assumptions:

1 Causal sufficiency: all variables are observed xti ∈ V1:T .
2 States are observed {sti : 1 ≤ t ≤ T, 1 ≤ i ≤ N}.
3 First-order Markov setting.
4 Additive noise model
5 At time t, the states control the causal structure.

the full time graph and conditional summary graph are identifiable from data.
Carles Balsells – – 10/26
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State-dependent Causal Inference
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Estimation

• Could we extend TiMINo causality [Peters et al., 2013] with observed states?

xtj = f st−1

j

(
(PA1

j |st−1)t−1
)
+ ϵtj (3)

• The direct causes of xtj depend on st−1 → KN models!

• To target real non-stationary domains we further assume.
• Components can be shared across datapoints X1,X2, · · · ∼ D.
• Components can be shared across variables, i.e. fk

i = f l
j .

• We amortize the causal discovery task using deep learning [Löwe et al., 2020].

• Consistency is left as future work.

Carles Balsells – – 12/26
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• Consistency is left as future work.

Carles Balsells – – 12/26



–

Carles Balsells

Motivation

Causal
discovery in
conditionally
stationary
time series

State-
dependent
Causal
Inference

Experiments

Conclusions

Appendix

Generative model

• Conditional summary graph including edge-types.

W =
{
wijk : 1 ≤ i, j ≤ N, 1 ≤ k ≤ K

}
, wijk ∈ {0, . . . , nϵ − 1}

• Edge-type: Functional form of the causal effect {”no-edge”, f1(·), f2(·), . . . }.

• xti ∈ Rd refers to some variables that we aim to predict (position, velocity,
bounding box, ...).

• sti ∈ {1, . . . ,K} refers to state of element i at time t.

• ztij ∈ {0, . . . , nϵ − 1}: interaction from i → j at time t. Conditioned on sti

p(X,W|S) = p(W)
T−1∏
t=0

N∏
j=1

pψ(x
t+1
j |xt, st,W) (4)

Carles Balsells – – 13/26
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State-dependent causal inference

SDCI implements a VAE-based approach.

1 Encoder: Edge-type inference.

qϕ(W|X,S) =
∏
ijk

qϕ(wijk|X,S)

2 Sample and compute ztij at each
time.

wijk ∼ qϕ(wijk|X,S)

ztij = wijk′ , k
′ = sti

3 Decoder: Models the dynamics.

pψ(x
t+1
i |xt, st,W)

State 1
State 2

Carles Balsells – – 14/26
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State-dependent causal inference

• Objective: ELBO estimation

log p(X|S) ≥ −KL (qϕ(W|X,S)||p(W)) + Eqϕ(W|X,S) [log pψ(X|W,S)] . (5)

• We can marginalise the states when these are hidden =⇒ {{xti}Ni=1}Tt=1 ∼ D.

p(X,W,S) = p(W)

T−1∏
t=0

pψ(x
t+1|xt, st,W)p(st+1|xt+1). (6)

qϕ(W,S|X) = qϕ(W|X)qϕ(S|X)

We now lack identifiability guarantees =⇒ more assumptions, restrictions.

Carles Balsells – – 15/26
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Experiments – Baseline comparison

• Linear data

xt+1
j = αxtj+

N∑
i ̸=j

βkx
t
i+ϵtj , k =

(
Ẽsti

)
ij

SG Accuracy
Method 2-edge 3-edge

const free

TdCM (T=100) 65.17± 2.65 63.67± 1.61 63.50± 1.62
CD-NOD (T=100) 39.33± 2.59 35.25± 2.51 28.58± 2.66
SAEM (T=100) 47.75± 3.67 39.04± 2.38 51.44± 3.81

TdCM (T=1000) 68.25± 2.29 61.17± 2.28 62.00± 2.14
CD-NOD (T=1000) 50.08± 2.59 42.08± 2.17 41.58± 2.02
SAEM (T=1000) 47.38± 4.10 25.93± 2.82 28.49± 3.28

ACD (T=50) 60.45± 1.60 87.00± 2.56 49.25± 3.05
SDCI (T=50) 97.08± 1.05 90.17± 2.22 64.00± 2.93

CSG Accuracy
2-edge 3-edge

const free

SDCI (T=50) 98.08± 0.64 76.04± 2.05 65.45± 1.99

• Spring data

fij = −δk(ri − rj), {δ0 = 0, δ1 = 1}

k = ztij , r̈i =
N∑
j=1

fij xi = {ri, ṙi}

5 10 20
Num. variables

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SG
 a

cc
ur

ac
y

SDCI
ACD
CD-NOD
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Experiments – Spring
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(a) Increasing variables and states.
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(b) Data efficiency.
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(c) Generalisation.
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Experiments – NBA

• We test SDCI on realistic scenarios, like NBA player trajectories.

• We sample long trajectories T ≈ 200, with
2D position and velocity (xti ∈ R4).

• Total training size: ∼150k samples.

• We hand-craft a state
function to study
SDCI-observed.
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Experiments – NBA

• SDCI-observed achieves comparable
performance to other sequential
generative baselines in forecasting.

• SDCI-unobserved learns regimes
where dynamical changes occur. 0 20 40 60 80 100

Time
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Mean value
ACD
SDCI Unobs (K=4)
SDCI Unobs (K=2)
SDCI Obs
VRNN

(a)

q (1|xt
i ) q (2|xt

i )

0.0
0.2
0.4
0.6
0.8
1.0

(b)

q (1|xt
i ) q (2|xt

i ) q (3|xt
i ) q (4|xt

i )

0.0
0.2
0.4
0.6
0.8
1.0

Figure: Learned regimes from SDCI on the NBA dataset using (a) K = 2 and (b) K = 4.
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• Our goal is to learn representations from sequential data in real non-stationary
domains.

• We developed State-dependent causal inference (SDCI) for causal discovery in
conditional time series data.

• The hidden state setting allows us to model non-stationary behaviours present
in realistic scenarios.

• We showcase models as SDCI could be leveraged for data interpretability.
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Causal discovery methods – Overview

• Constrain-based
methods

C.I. tests
X1 ⊥⊥ X2|X3

E.g. PC algorithm,
FCI, ts-PC, ...

• Score-based methods

Greedy Equivalence
Search (GES)
For time series:
Learning Dynamic
Bayesian Networks

E.g. DYNOTEARS, ...

• Functional
model-based methods

Functional models
represent cause and
effect
X1 = f1(X2, X3, ϵ1)

E.g. VAR, (neural)
Granger causality, ...
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