Graphs in State-Space Models for Granger Causality (in the Earth, Climate and Social systems)

Víctor Elvira | Edinburgh Émilie Chouzenoux | Paris-Saclay Jordi Cerdà & Gustau Camps-Valls | València

UV es

🔀 gustau.camps@uv.es

Introduction

- GraphEM
- Experiments
- Causeme.net
- Conclusions

Introduction

• Motivation:

- Sequential processing of observed multivariate data is everywhere!
- Interrelated random processes: one is observed + one is hidden
- State-space models (SSMs) \rightarrow Linear-Gaussian state-space model
 - e.g Kalman filter is a simple & efficient inference procedure

• Challenges:

- Inference algorithms in SSMs need model parameters to be known
- Joint estimation of parameters & transition matrix is difficult

This talk

- What?
 - Estimate the transition matrix in the linear-Gaussian SSM
 - Relate the transition matrix to adjacency matrix of a directed graph
 - Connections represent (causal) dependencies between the states
- How?
 - Develop an efficient Expectation-Minimization (EM) methodology
 - Estimate transition matrix assuming a sparse graph model
- What for?
 - Wide range of problems in Earth, weather, climate, social sciences

The linear-Gaussian Model

- Deterministic notation

 - Observations
 - Unobserved state $\mathbf{x}_k = \mathbf{A}\mathbf{x}_{k-1} + \mathbf{q}_k$ $\mathbf{y}_k = \mathbf{H}\mathbf{x}_k + \mathbf{r}_k$ where $\mathbf{q}_k \sim \mathcal{N}(0, \mathbf{Q})$ and $\mathbf{r}_k \sim \mathcal{N}(0, \mathbf{R})$
- Probabilistic notation
 - Hidden state
 - Observations

 $\mathcal{N}(\mathbf{x}_k; \mathbf{A}\mathbf{x}_{k-1}, \mathbf{Q})$ $\mathcal{N}(\mathbf{y}_k; \mathbf{H}\mathbf{x}_k, \mathbf{R})$

On the transition matrix & Granger causality

- Deterministic notation
 - Unobserved state
 - Observations

$$\begin{aligned} \mathbf{x}_k &= \mathbf{A}\mathbf{x}_{k-1} + \mathbf{q}_k \\ \mathbf{y}_k &= \mathbf{H}\mathbf{x}_k + \mathbf{r}_k \\ \text{where } \mathbf{q}_k \sim \mathcal{N}(0, \mathbf{Q}) \text{ and } \mathbf{r}_k \sim \mathcal{N}(0, \mathbf{R}) \end{aligned}$$

- (*i,j*) entry in **A** encodes the weight in which *j*-th time series in the hidden state affects the *i*-th time series in the next step (O for no Granger effect)
- A : 1) is high-dimensional, 2) controls the AR process of the hidden state, and 3) related to the inner structure of the system (my prior!)

The linear-Gaussian Model - inference

• Kalman filter (forward)

- predicted and filtered distributions are Gaussian

 $p(\mathbf{x}_k|\mathbf{y}_{1:k-1}) \qquad p(\mathbf{x}_k|\mathbf{y}_{1:k})$

• Rauch-Tung-Striebel (RTS) smoother (backward)

- also Gaussian, by processing the observations backward

 $p(\mathbf{x}_k|\mathbf{y}_{1:K})$

Kalman Filter and RTS smoother

Kalman filter Initialize: \mathbf{m}_0 , \mathbf{P}_0 For $k = 1, \dots, K$ Predict stage: $\mathbf{x}_k^- = \mathbf{A}\mathbf{m}_{k-1}$ $\mathbf{P}_k^- = \mathbf{A}\mathbf{P}_{k-1}\mathbf{A}^\top + \mathbf{Q}$ Update stage: $\mathbf{z}_k = \mathbf{y}_k - \mathbf{H}\mathbf{x}_k^ \mathbf{S}_k = \mathbf{H}\mathbf{P}_k^-\mathbf{H}^\top + \mathbf{R}$ $\mathbf{K}_k = \mathbf{P}_k^-\mathbf{H}^\top\mathbf{S}_k^{-1}$ $\mathbf{m}_k = \mathbf{x}_k^- + \mathbf{K}_k\mathbf{z}_k$ $\mathbf{P}_k = \mathbf{P}_k^- - \mathbf{K}_k\mathbf{S}_k\mathbf{K}_k^\top$

Proof For k = K, ..., 1 **Smoothing stage:** $\mathbf{x}_{k+1}^- = \mathbf{A}\mathbf{m}_k$ $\mathbf{P}_{k+1}^- = \mathbf{A}\mathbf{P}_k\mathbf{A}^\top + \mathbf{Q}$ $\mathbf{G}_k = \mathbf{P}_k\mathbf{A}^\top(\mathbf{P}_{k+1}^-)^{-1}$ $\mathbf{m}_k^s = \mathbf{m}_k + \mathbf{G}_k(\mathbf{m}_{k+1}^s - \mathbf{x}_{k+1}^-)$ $\mathbf{P}_k^s = \mathbf{P}_k + \mathbf{G}_k(\mathbf{P}_{k+1}^s - \mathbf{P}_{k+1}^-)\mathbf{G}_k^\top$

✓ Filtering distribution $p(\mathbf{x}_k | \mathbf{y}_{1:k}) = \mathcal{N}(\mathbf{x}_k; \mathbf{m}_k, \mathbf{P}_k)$

- ✓ Smoothing distribution $p(\mathbf{x}_k | \mathbf{y}_{1:K}) = \mathcal{N}(\mathbf{x}_k; \mathbf{m}_k^s, \mathbf{P}_k^s)$
- X What if the state matrix A is unknown?

GraphEM algorithm

Goal and challenge

• Goal: find the MAP estimate of A given the observed data $p(\mathbf{A}|\mathbf{y}_{1:K}) \propto p(\mathbf{A})p(\mathbf{y}_{1:K}|\mathbf{A})$

Equivalent to: minimize

$$\varphi_K(\mathbf{A}) = -\log p(\mathbf{A}) - \log p(\mathbf{y}_{1:K}|\mathbf{A})$$

• Challenge: estimating $p(\mathbf{y}_{1:K}|\mathbf{A})$ requires to run Kalman filter

$$\varphi_k(\mathbf{A}) = \varphi_{k-1}(\mathbf{A}) - \log p(\mathbf{y}_k | \mathbf{y}_{1:k-1}, \mathbf{A})$$

= $\varphi_{k-1}(\mathbf{A}) + \frac{1}{2} \log |2\pi \mathbf{S}_k(\mathbf{A})| + \frac{1}{2} \mathbf{z}_k(\mathbf{A})^\top \mathbf{S}_k(\mathbf{A})^{-1} \mathbf{z}_k(\mathbf{A})$

Goal and challenge

• Goal: find the MAP estimate of A given the observed data $p(\mathbf{A}|\mathbf{y}_{1:K}) \propto p(\mathbf{A})p(\mathbf{y}_{1:K}|\mathbf{A})$

Equivalent to: minimize

$$\varphi_K(\mathbf{A}) = -\log p(\mathbf{A}) - \log p(\mathbf{y}_{1:K}|\mathbf{A})$$

• Challenge: estimating $p(\mathbf{y}_{1:K}|\mathbf{A})$ requires to run Kalman filter

$$\begin{aligned} \varphi_k(\mathbf{A}) &= \varphi_{k-1}(\mathbf{A}) - \log p(\mathbf{y}_k | \mathbf{y}_{1:k-1}, \mathbf{A}) \\ &= \varphi_{k-1}(\mathbf{A}) + \frac{1}{2} \mathbf{z}_k(\mathbf{A}) | \mathbf{z}_k(\mathbf{A}) | + \frac{1}{2} \mathbf{z}_k(\mathbf{A})^\top \mathbf{S}_k(\mathbf{A})^{-1} \mathbf{z}_k(\mathbf{A}) \\ &= \frac{1}{2} \mathbf{z}_k(\mathbf{A}) | \mathbf{z}_k(\mathbf{A}) | \mathbf{z}_k(\mathbf{A}) | \mathbf{z}_k(\mathbf{A}) | \mathbf{z}_k(\mathbf{A}) \\ &= \frac{1}{2} \mathbf{z}_k(\mathbf{A}) | \mathbf{z}_k(\mathbf{A}$$

GraphEM strategy

• EM strategy:

- Minimize a sequence of tractable approximations of φ_K
- Do it via satisfying a majorizing property
- LASSO regularization:
 - choose the prior to favor sparse matrix ${f A}$
 - reveal interpretable and compact network of interdependencies

$$(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \varphi_0(\mathbf{A}) = \gamma \|\mathbf{A}\|_1, \qquad \gamma > 0$$

The E step: Majorizing approximation of φ_K

1) Run Kalman filter/RTS smoother by setting the state matrix to \mathbf{A}'

$$\boldsymbol{\Sigma} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{P}_{k}^{s} + \mathbf{m}_{k}^{s} (\mathbf{m}_{k}^{s})^{\top} \qquad \boldsymbol{\Phi} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{P}_{k-1}^{s} + \mathbf{m}_{k-1}^{s} (\mathbf{m}_{k-1}^{s})^{\top}$$
$$\mathbf{C} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{P}_{k}^{s} \mathbf{G}_{k-1}^{\top} + \mathbf{m}_{k}^{s} (\mathbf{m}_{k-1}^{s})^{\top}$$

2) Build $\mathcal{Q}(\mathbf{A}; \mathbf{A}') = \frac{K}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\mathbf{\Sigma} - \mathbf{C}\mathbf{A}^{\top} - \mathbf{A}\mathbf{C}^{\top} + \mathbf{A}\mathbf{\Phi}\mathbf{A}^{\top}) \right) + \varphi_0(\mathbf{A}) + \mathcal{C}$ with the prior $\varphi_0(\mathbf{A}) = -\log p(\mathbf{A})$ such that $\mathcal{Q}(\mathbf{A}; \mathbf{A}') \ge \varphi_K(\mathbf{A}), \qquad \mathcal{Q}(\mathbf{A}'; \mathbf{A}') = \varphi_K(\mathbf{A}')$ [Sarkka 2013]

The M step: Upper bound optimization

• Goal: search for a minimizer of $\mathcal{Q}(\mathbf{A};\mathbf{A}')$ with respect to \mathbf{A}

$$\operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{K}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\mathbf{\Sigma} - \mathbf{C} \mathbf{A}^{\top} - \mathbf{A} \mathbf{C}^{\top} + \mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}) \right)}_{f_1(\mathbf{A})} + \underbrace{\gamma \| \mathbf{A} \|_1}_{f_2(\mathbf{A})}$$

• **Problem**: Convex non-smooth minimization problem!

The M step: Upper bound optimization

• Goal: search for a minimizer of $\mathcal{Q}(\mathbf{A};\mathbf{A}')$ with respect to \mathbf{A}

$$\operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{K}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\mathbf{\Sigma} - \mathbf{C} \mathbf{A}^{\top} - \mathbf{A} \mathbf{C}^{\top} + \mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}) \right)}_{f_1(\mathbf{A})} + \underbrace{\gamma \| \mathbf{A} \|_1}_{f_2(\mathbf{A})}$$

- Alternative:
 - Proximal splitting approach [Combettes and Pesquet, 2010]

$$\mathsf{prox}_f(\widetilde{\mathbf{A}}) = \mathsf{argmin}_{\mathbf{A}}\left(f(\mathbf{A}) + \frac{1}{2}\|\mathbf{A} - \widetilde{\mathbf{A}}\|_F^2\right)$$

- Douglas-Rachford algorithm [Benfenati et al., 2020] - http://proximity-operator.net

The GraphEM in a nutshell

GraphEM algorithm

- Initialization of $\mathbf{A}^{(0)}$.
- $\blacktriangleright \ \ {\rm For} \ i=1,2,\ldots$

E-step Run the Kalman filter and RTS smoother by setting $\mathbf{A}' := \mathbf{A}^{(i-1)}$ and construct $\mathcal{Q}(\mathbf{A}; \mathbf{A}^{(i-1)})$. M-step Update $\mathbf{A}^{(i)} = \operatorname{argmin}_{\mathbf{A}} \left(\mathcal{Q}(\mathbf{A}; \mathbf{A}^{(i-1)}) \right)$ using Douglas-Rachford algorithm.

- Versatile, valid approach if the proximity operator of f_2 is available
- In practice, Douglas-Rachford iterations need warm-up initializations
- Good properties, e.g. monotonical decrease & convergence [Elvira et al, 2022]

Experimental results

- Synthetic
- Climate
- Migrations
- Food insecurity

1- Synthetic problems

Synthetic problems

- 4 synthetic datasets with H = Id and block-diagonal matrix A
- Diagonal blocks of **A** are randomly set as matrices of AR(1) processes

Dataset $(b_j)_{1 \leq j \leq b}$		$(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}})$			
A	(3, 3, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$			
В	(3, 3, 3)	$(1, 1, 10^{-4})$			
C	(3, 5, 5, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$			
D	(3,5,5,3)	$(1, 1, 10^{-4})$			

- GraphEM [Elvira 2022] MLEM [Sarkka 2013] Pairwise & Cond. GC [Luengo 2019]
- Results are averaged on 50 runs

Synthetic problems

	method	RMSE	accur.	prec.	recall	spec.	F1	
A	GraphEM	0.081	0.9104	0.9880	0.7407	0.9952	0.8463	
	MLEM	0.149	0.3333	0.3333	1	0	0.5	
	PGC	-	0.8765	0.9474	0.6667	0.9815	0.7826	
	CGC	-	0.8765	1	0.6293	1	0.7727	
В	GraphEM	0.082	0.9113	0.9914	0.7407	0.9967	0.8477	
	MLEM	0.148	0.3333	0.3333	1	0	0.5	
	PGC	-	0.8889	1	0.6667	1	0.8	
	CGC	-	0.8889	1	0.6667	1	0.8	
С	GraphEM	0.120	0.9231	0.9401	0.77	0.9785	0.8427	
	MLEM	0.238	0.2656	0.2656	1	0	0.4198	
	PGC	-	0.9023	0.9778	0.6471	0.9949	0.7788	
	CGC	-	0.8555	0.9697	0.4706	0.9949	0.6337	
D	GraphEM	0.121	0.9247	0.9601	0.7547	0.9862	0.8421	
	MLEM	0.239	0.2656	0.2656	1	0	0.4198	
	PGC	-	0.8906	0.9	0.6618	0.9734	0.7627	
	CGC	-	0.8477	0.9394	0.4559	0.9894	0.6139	

 No RMSE for PGC/CGC as edge-detection methods

- MLEM poor results as
 - no sparsity is encoded
- GraphEM much better, esp. accuracy & F1

[Elvira et al, 2022] ²⁰

Synthetic problem "C"

2- Climate science

[Runge et al, 2020]

Climate data

- Synthetic data generation [Runge et al, 2020]
 - Climate model simulations of pre-industrial (stationary) control runs
 - 15 vars: hfls, hfss, huss, rlds, rlus, rlut, ta, tas, tasmax, ...
 - Varimax projected onto 5 PCs
 - VAR modeling & clipped coefficients
 - Averaged time series (5-day resolution) + add noise
- GraphEM [Elvira 2022] VAR [Sarkka 2013] GC [Luengo 2019] PCMCI [Runge, 2019]
- Results are averaged on 100 runs

Climate results

method	best hyperparameters	accur.	prec.	recall	spec.	F1
GraphEM [12]	$\sigma_{\rm R} = 0.1, \sigma_{\rm P} = 10^{-4}, \gamma_1 = 50$	0.72	0.75	0.55	0.86	0.63
VAR [32]	$\ell = 8$	0.56	0.50	0.46	0.64	0.48
Granger [14]	$\ell = 8$	0.6	0.57	0.36	0.79	0.44
PCMCI [25]	$\tau_{\rm max}$ = 8, $\alpha_{\rm PC}$ = 0.05, ParCorr	0.72	0.83	0.45	0.93	0.59

- GraphEM outperforms VAR and GC in all performance metrics
- GraphEM outperforms PCMCI in recall and overall F1 score

Climate results

- Good detection of links $\{2, 4\} \rightarrow 5$ unlike PCMCI
- Much sparser (and less convoluted) solution unlike VAR and GC

3- Climate-human interactions

Understanding climate-induced migrations

Understanding climate-induced migrations

[Tarraga et al, 2022]

Understanding climate-induced migrations

Understanding food insecurity

FEWS NET classification is IPC-compatible. IPC-compatible analysis follows key IPC protocols, but does not necessarily reflect the consensus of national food security partners. FEWS NET is a USAID-funded activity. The content of this graphic does not necessarily reflect the view of the United States Agency for International Development or the United States Government.

[Cerdà et al, 2022]

Understanding food insecurity - Data

- Monthly sampled for 37 districts in Somalia, 5 years, 70 points each
- Market/food/livestock/water prices, displaced people, **malnutrition**, fatalities, climate variables, humanitarian aid
- A constrained with (un)reasonable connections

[Cerdà et al, 2022]

Understanding food insecurity 0.3 food_prices spi 0.26 idp_drought 0.21 0.74 0.2 0.21 0.37 gam livestock prices 0.3 0.48 0.18 water prices sorghum production Granger fatalities causality Node Intensity Link Intensity 0.5 0.5 0 0 ¹[Cerdà et al, 2022]

Understanding food insecurity

causeme.net

Conclusions

Conclusions

- **GraphEM**: EM method for inferring the linear hidden state relationships in a linear-Gaussian state-space model
 - **Proximal splitting** w/ convergence guarantees to solve the M-step
 - LASSO penalization to model and represent the state entries interactions as a compact and interpretable graph + prior-enforcing
- Good numerical performance in synthetic and real problems
- Use & contribute causeme.net !
- Nonlinear extensions through kernels & particle filtering