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Introduction v ||eme

e Motivation:
- Sequential processing of observed multivariate data is everywhere!

— Interrelated random processes: one is observed + one is hidden
- State-space models (SSMs) — Linear-Gaussian state-space model

* ¢.g Kalman filter is a simple & efficient inference procedure

e Challenges:
— Inference algorithms in SSMs need model parameters to be known
— Joint estimation of parameters & transition matrix is difficult




This talk

e What?
— Estimate the transition matrix in the linear-Gaussian SSM
- Relate the transition matrix to adjacency matrix of a directed graph
- Gonnections represent (causal) dependencies between the states
e How?
- Develop an efficient Expectation-Minimization (EM) methodology
- Estimate transition matrix assuming a sparse graph model

o What for?
— Wide range of problems in Earth, weather, climate, social sciences
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The linear-Gaussian Model

e [eterministic notation
— Unobserved state x, = Axip_1 + qx
- Observations v = Hxp +rp
where q ~ N(0,Q) and ri, ~ N (0,R)
e Probabilistic notation
— Hidden state N(xp; Axp_1,Q)
- QObservations N(yr; Hxg, R)



On the transition matrix & Granger causality

e [eterministic notation
- Unobserved state xr = Axr_1 + qx
— Observations v = Hxy + rg
where q ~ N(0,Q) and ri, ~ N (0,R)
o (ij)entry in A encodes the weight in which j-th time series in the hidden
state affects the i-th time series in the next step (0 for no Granger effect)
e A :1)is high-dimensional, 2) controls the AR process of the hidden state,

and 3) related to the inner structure of the system (my prior!)



The linear-Gaussian Model - inference

e Kalman filter (forward)
— predicted and filtered distributions are Gaussian
P(Xk|y1:k-1) p(Xk|y1:k)

e Rauch-Tung-Striebel (RTS) smoother (backward)
— also Gaussian, by processing the observations backward

P(Xk|y1:K)



Kalman Filter and RTS smoother

Kalman filter RTS smoother

» Initialize: my, Po » Fork=K,..., 1

» Fork=1,..., K Smoothing stage:

Pred|c‘i stage: Xp = Amyg
x,, = Amy_; P.I:—l-l =AP,AT +Q

P, =AP,_ ;AT +Q

G =P, AT(P !
Update stage:

my = my + Gi(mj, —x0,)
P =P+ Gi(Pi; — P )G

zy = yr — Hx,

Sy =HP_H' +R
K, =P _HTS!
mp = X’; + Kz

P, =P, — K;S;K]

w

v Filtering distribution  p(xk|y1:x) = N (xk; my, Py)
v Smoothing distribution p(xx|y1:x) = N (xx; mi, P3)
X What if the state matrix A is unknown?



GraphEM algorithm




Goal and challenge

e (Goal: find the MAP estimate of A given the observed data
p(Aly1:x) < p(A)p(yi:kx|A)
Equivalent to: minimize
pr(A) =—logp(A) —logp(yi:x|A)
e Challenge: estimating p(y1.x|A) requires to run Kalman filter

or(A) = pr_1(A) — log plyelyrn-1, A)
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GraphEM strategy

o EM strategy:
— Minimize a sequence of tractable approximations of ¥ x
- Do it via satisfying a majorizing property
o LASSO regularization:
— choose the prior to favor sparse matrix A
- reveal interpretable and compact network of interdependencies

(VA e R %) @o(A) =v[|Al;, >0

[Elvira et al, 2022]
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The E step: Majorizing approximation of ¥k

1) Run Kalman filter/RTS smoother by setting the state matrix to A’

K K
1 . s, s 1 Z s s 5
> = E E Pk —+ mk(mk)—r b — ? Pk:—l —+ mk_l(mk_l)—r
1 K
C = 7 E P:G,_, + mi(mi_l)—r

1

2) Build 2Aa;A") = gtr Q '(X-CA' —AC' +A<I>AT)) +@o(A) +C
With the prior ¢o(A) = —logp(A)
such that 9(A; A") > px(A),  Q(A";A') = px(A) [Sarkka 2013]

7> 0
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The M step: Upper bound optimization

o (Goal: search for a minimizer of Q(A; A'") with respect to A

K
argmin 5 Etr (Q_l(E —CAT —ACT + A@AT)) + Al
. _—

f1TA) f2(A)

e Problem: Convex non-smooth minimization problem!



The M step: Upper bound optimization

o (Goal: search for a minimizer of Q(A; A'") with respect to A

K
argmin 5 Etr (Q_l(z —CAT —ACT + A@AT)) + Al
. _—

f1TA) f2(A)

o Alternative:
— Proximal splitting approach [combettes and Pesquet, 2010]
proxf(ﬁ) — argmin (f(A) + %|A — KH%)

- Douglas-Rachford algorithm [Benfenati et al., 2020] - http://proximity-operator.net
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The GraphEM in a nutshell

> Initialization of A(®.

» Fori=1,2,...

E-step Run the Kalman filter and RTS smoother by setting A’ := A= and
construct Q(A; Ai—1)),

M-step Update A(") = argminy (Q(A; A(i_l))) using Douglas-Rachford
algorithm.

A

o Versatile, valid approach if the proximity operator of f2 is available
e |n practice, Douglas-Rachford iterations need warm-up initializations

e (Good properties, e.g. monotonical decrease & convergence
[Elvira et al, 2022] 16
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1- Synthetic problems




Synthetlc problems

o 4 synthetic datasets with H = Id and block-diagonal matrix A
o Diagonal blocks of A are randomly set as matrices of AR(1) processes

Dataset (bj)lgjgb (crq,ch,crp)
A (3,3,3) | (10°5,10° 5,10 %)
B (3,3,3) (1,1,107%)
C (3,5,5,3) | (107,10 ", 10 %)
D (3,5,5,3) (1,1,1077)

o GraphEM [enira 2022 - MLEM [sarkka 2013] - Pairwise & Cond. GG [Luengo 2019]
e Results are averaged on 50 runs



Synthetic problems

method RMSE | accur. | prec. | recall | spec. F1 o
GraphEM || 0.081 | 0.9104 | 0.9880 | 0.7407 | 0.9952 | 0.8463 No RMSE for PGC/CGC
o | MLEM || 0149 | 03333 | 0.3333 | 1 0 0.5 :
PGC - | 0.8765 | 0.9474 | 0.6667 | 0.9815 | 0.7826 ds edge'deteCtlon
CGC - |os7es | 1 |o06293| 1 | 07727
GraphEM || 0.082 | 0.9113 | 0.9914 | 0.7407 | 0.9967 | 0.8477 methods
5| MLEM | 0148 | 03333 | 03333 | 1 0 0.5
PGC - |ossso | 1 |o06667 | 1 o8 | * MLEM poor results as
CGC - |ossso | 1 |o06667 | 1 0.8
GraphEM || 0.120 | 0.9231 | 0.9401 | 0.77 | 0.9785 | 0.8427 no Spars|ty is encoded
o | MLEM || 0238 | 0.2656 | 0.2656 | 1 0 | 0.4198
PGC - 0.9023 | 0.9778 | 0.6471 | 0.9949 | 0.7788 | ® GraphEM mUCh better,
CGC - | 0.8555 | 0.9697 | 0.4706 | 0.9949 | 0.6337
GraphEM || 0.121 | 0.9247 | 0.9601 | 0.7547 | 0.9862 | 0.8421
5| MLEM || 0239 | 0.2656 | 0.2656 | 1 0 | 0.4198 €sp. accuracy &
PGC - | 08906 | 0.9 |0.6618 | 0.9734 | 0.7627
CGC - | 0.8477 | 0.9394 | 0.4559 | 0.9894 | 0.6139 [Elvira et al, 2022] 2




Synthetic problem “C”

* Both
structure of
the graph and
weight values
are well
recovered

[Elvira et al, 2022] *



2- Climate science







Climate teleconnections

Xl

[Runge et al, 2020]

24



Climate data

e Jynthetic data generation [Runge et al, 2020]
- Climate model simulations of pre-industrial (stationary) control runs
* 15 vars: hfls, hfss, huss, rlds, rlus, rlut, ta, tas, tasmax, ...
— Varimax projected onto 5 PCs
— VAR modeling & clipped coefficients
- Averaged time series (9-day resolution) + add noise

® GraphEM [enira 20221 - VAR [Sarkka 2013] - GG [Luengo 2019] - PGMGI [Runge, 2019]
e Results are averaged on 100 runs
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Climate results

method best hyperparameters accur.|prec.|recall|spec.| F1
GraphEM [12]| or = 0.1,0p = 107%, y; =50 || 0.72 [0.75| 0.55 | 0.86 [0.63
VAR [32] £=8 0.56 |0.50 | 0.46 | 0.64|0.48
Granger [14] =38 0.6 {0.5710.36 |0.79(0.44
PCMCI [25] |Tmax = 8, apc = 0.05, ParCorr|| 0.72 [0.83| 0.45 |0.93|0.59

o (GraphEM outperforms VAR and GC in all performance metrics
o GraphEM outperforms PCMCI in recall and overall F1 score
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Link Intensity  Node Intensity

Climate results

1
I Truth VAR Granger PCMCI
0

0

e (Good detection of links {2, 4} — 5 unlike PCMCI
e Much sparser (and less convoluted) solution unlike VAR and GC

2]



3- Climate-human interactions




Understanding climate-induced migrations
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Understanding food insecuri

B Microsoft

East Africa Food Security Outcomes
Projections for June to September 2018

IPC V2.0 Acute Food Insecurity Phase
1: Minimal
2: Stressed

B 3:crisis.

I 4 Emergency

I 5: Famine

y  Would likely be at least one phase worse without
! current or programmed humanitarian assistance

1 Parks and reserves
~{ I Not mapped
4| Ethiopia's Somali Region remains an area of high concern

for FEWS NET. Classification of food security outcomes
will be updated soon pending the collection of additional information

Y
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?‘g W Kiometers

FEWS NETis a USAID-funded acivty. The content of this graphic does not necessariy reflectthe
view of the United States Agency for United

FEWS NET classifcation is IPC-compatible. IPC-compatible analysis folows key IPC protocols,
but does not necessarily reflectthe consensus of national food securty partners.

[Cerda et al, 2022]



Understanding food insecurity - Data

"M

e Monthly sampled for 37 districts in Somalia,> |~
years, 10 points each N
o Market/food/livestock/water prices, displaced Wm
people, malnutrition, fatalities, climate _g MWVA
variables, humanitarian aid [~ =
e A constrained with (un)reasonable connections -—— "~

[Cerda et al, 2022]



B Microsoft
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B Microsoft
Understanding food insecurity
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causeme.net

(BETA)

CAUSEME

NEURIPS 2019 COMPETITION CAUSAL DISCOVERY HOW IT WORKS HOW TO CITE LINKS LOGIN SIGN UP TERMS

CAUSEME

A platform to benchmark causal discovery methods






Conclusions
e GraphEM: EM method for inferring the linear hidden state relationships
in a linear-Gaussian state-space model

- Proximal splitting w/ convergence guarantees to solve the M-step

- LASSO penalization to model and represent the state entries
interactions as a compact and interpretable graph + prior-enforcing

o Good numerical performance in synthetic and real problems
o Use & contribute causeme.net !
o Nonlinear extensions through kernels & particle filtering .



