Learning, evaluating and analyzing a recommendation rule for early blood transfer in the ICU

Antoine Chambaz¹, N. Gatulle³, J. Josse², P. Zhao² and the Traumabase group

¹ MAP5 (CNRS UMR 8145), Université Paris Cité

² PreMeDICaL, Inria–Inserm

³ La Pitié–Salpêtrière, APHP

April 21st, 2023

When Causal Inference meets Statistical Analysis

Early blood transfer in the ICU

- Severely injured patients experiencing haemorrhagic shock often require massive transfusion
- Early transfusion of blood products (plasma, red blood cells and platelets) is common and associated with improved outcomes in the hospital
- However, determining a right amount of blood products is still a matter of scientific debate
- Our objective is to

build and analyze a recommendation rule for early transfusion of blood products to assist the medical team in the ICU Early blood transfer in the ICU

Traumabase: a French observatory for major trauma

A recommendation rule

Learning a recommendation rule

Evaluating the recommendation rule

Analyzing the recommendation rule

Discussion

The Traumabase group

- Created in 2012, the French Traumabase group is a collaboration focusing on major trauma
- The group's objectives are to improve major trauma care, to inform public health decisions and to facilitate research
- Today,
 - 23 French trauma centers contribute to the Traumabase group
 - the Traumabase data set gathers information on more than 40,000 trauma cases from admission until discharge from the ICU all over France

The Traumabase data set

For each patient in the Traumabase data set, the information is naturally regrouped into four categories:

- epidemiological data:
 - age, gender, BMI, medical history, type of trauma (penetrating?), ...
- pre-hospital data:
 - Glasgow score, pupillary abnormality, blood pressures, maximum heart rate, minimum peripheral capillary oxygen saturation (SpO2), ...
- admission data:
 - same as above & differences pre-hospital vs. admission & temperature, indicator of hemorrhagic shock & early transfusion of blood products, ...
- hospital data:
 - durations of stay in the ICU, in the hospital; survival in the hospital

Early transfusion of blood products

- Blood products:
 - plasma (PFC), red blood cells (CGR), platelets
 - rare, and conserved frozen; need up to 45 minutes to unfreeze
- Despite official recommendations, e.g.
 - Société Française d'Anesthésie Réanimation (2015): ratio PFC/GCR between 1 and 2
 - European 5th guideline on management of major bleeding and coagulopathy following trauma (2019): ratio PFC/GCR 2

one observes a significant variability in early transfusion of blood products practice

• What could be a best practice is still a matter of scientific debate

Early blood transfer in the ICU

Traumabase: a French observatory for major trauma

A recommendation rule

Learning a recommendation rule

Evaluating the recommendation rule

Analyzing the recommendation rule

Discussion

A recommendation rule: what is it?

• Statistical model:

each patient contributes a data-structure $O := (W, T, Y) \sim P$ with

- $W \in W$: covariates (epidemiological data, pre-hospital data, admission data obtained before the early transfusion of blood products)
- $T := (A, B, C) \in T$: quantification of early transfusion of plasma (A), red blood cells (B) and platelets (C)
- $Y \in \{0, 1\}$: indicator of survival in the hospital

A recommendation rule: what is it?

• Statistical model:

each patient contributes a data-structure $O := (W, T, Y) \sim P$ with

- $W \in W$: covariates (epidemiological data, pre-hospital data, admission data obtained before the early transfusion of blood products)
- $T := (A, B, C) \in T$: quantification of early transfusion of plasma (A), red blood cells (B) and platelets (C)
- $Y \in \{0, 1\}$: indicator of survival in the hospital
- Causal model:

each patient contributes a counterfactual data-structure $\mathbb{O} := (W, (Y[t])_{t \in \mathcal{T}}, T) \sim \mathbb{P}$ with

- $Y[t] \in \{0, 1\}$: the *potential/counterfactual* indicator of survival in the hospital in a world where T = t would be *imposed*
- Y := Y[T]: the *actual* indicator of survival in the hospital, in the real world ("consistency assumption")
- the set of optimal actions for that patient: $\arg \max_{t \in \mathcal{T}} Y[t]$
- the set of optimal recommendation rules at the population level:

 $\underset{r:\mathcal{W}\to\mathcal{T}}{\arg\max} E_{\mathbb{P}}\{Y[r(W)]\}$

• Problem:

- viewing the data set as a collection of O₁,..., O_i := (W_i, T_i, Y_i),..., O_N^{ind}_nP, the empirical law of T is highly concentrated around {(a, b, c) = (q, q, q) : q ∈ N} ∩ T (*i.e.*, same number of bags for all blood products)
- hence would be unrealistic to look for a rule $r: \mathcal{W} \to \mathcal{T}$

• Problem:

- viewing the data set as a collection of O₁,..., O_i := (W_i, T_i, Y_i),..., O_N^{ind}P, the empirical law of T is highly concentrated around {(a, b, c) = (q, q, q) : q ∈ N} ∩ T (*i.e.*, same number of bags for all blood products)
- hence would be unrealistic to look for a rule $r: \mathcal{W} \to \mathcal{T}$
- Proposed solution:
 - define $\tilde{A} := \mathbf{1}\{A = 1\} + 2\mathbf{1}\{A \ge 2\}$

• Problem:

- viewing the data set as a collection of O₁,..., O_i := (W_i, T_i, Y_i),..., O_N^{ind}_iP, the empirical law of T is highly concentrated around {(a, b, c) = (q, q, q) : q ∈ N} ∩ T (*i.e.*, same number of bags for all blood products)
- hence would be unrealistic to look for a rule $r: \mathcal{W} \to \mathcal{T}$
- Proposed solution:

• define
$$\tilde{A} := 1\{A = 1\} + 21\{A \ge 2\}$$
, $\tilde{A} := \begin{cases} 0 \text{ if } A = 0, \\ 1 \text{ if } A = 1, \\ 2 \text{ if } A \ge 2, \end{cases}$

• Problem:

- viewing the data set as a collection of O₁,..., O_i := (W_i, T_i, Y_i),..., O_N^{ind}_nP, the empirical law of T is highly concentrated around {(a, b, c) = (q, q, q) : q ∈ N} ∩ T (*i.e.*, same number of bags for all blood products)
- hence would be unrealistic to look for a rule $r: \mathcal{W} \to \mathcal{T}$
- Proposed solution:
 - define $\tilde{A} := \mathbf{1}\{A = 1\} + 2\mathbf{1}\{A \ge 2\}$
 - instead of arg max_{*r*: $W \to T$} $E_{\mathbb{P}}\{Y[r(W)]\}$, target

 $r^{\star}(\mathbb{P}) := \arg \max_{r: \mathcal{W} \to \{0,1,2\}} E_{\mathbb{P}}\{Y[\tilde{T}_r]\},$

where

$$\tilde{T}_r | W \sim \mathcal{L}_P(T | \tilde{A} = r(W), W)$$

Early blood transfer in the ICU

Traumabase: a French observatory for major trauma

A recommendation rule

Learning a recommendation rule

Evaluating the recommendation rule

Analyzing the recommendation rule

Discussion

Identifiability and learning strategy

• Is $r^{\star}(\mathbb{P})$ (a feature of \mathbb{P}) identifiable under P (*i.e.*, a feature of P)?

Identifiability and learning strategy

• Is $r^{\star}(\mathbb{P})$ (a feature of \mathbb{P}) identifiable under P (*i.e.*, a feature of P)?

- if there exists $\delta > 0$ such that $\delta \leq P(\tilde{A} = \tilde{a}|W)$ for all $\tilde{a} \in \{0, 1, 2\}$ *P*-as. (testable)
- if $T \perp Y[t]|W$ for all $t \in T$ ("randomization assumption", untestable)
- then, for every $r: \mathcal{W} \to \{0, 1, 2\}$,

 $E_{\mathbb{P}}\{Y[\tilde{T}_r]\} = E_{\mathbb{P}}\{\bar{Q}_{\mathbb{P}}(r(W), W)\}, \quad \text{where} \quad \bar{Q}_{\mathbb{P}}$

$$P(ilde{A}, Y) := E_P(Y| ilde{A}, W)$$

hence

$$r^{\star}(\mathbb{P})(W) = \left| rgmax_{\tilde{a} \in \{0,1,2\}} \bar{Q}_{P}(\tilde{a},W) =: \rho(P)(W) \right|$$

Identifiability and learning strategy

• Is $r^{\star}(\mathbb{P})$ (a feature of \mathbb{P}) identifiable under P (*i.e.*, a feature of P)?

• then, for every
$$r : \mathcal{W} \to \{0, 1, 2\},$$

 $E_{\mathbb{P}}\{Y[\tilde{T}_r]\} = E_P\{\bar{Q}_P(r(\mathcal{W}), \mathcal{W})\},$ where $\bar{Q}_P(\tilde{A}, Y) := E_P(Y|\tilde{A}, \mathcal{W})$
hence
 $r^*(\mathbb{P})(\mathcal{W}) = \boxed{\underset{\tilde{a} \in \{0, 1, 2\}}{\arg \max \bar{Q}_P(\tilde{a}, \mathcal{W}) =: \rho(P)(\mathcal{W})}}$

• Consequence: an estimator \overline{Q}_n of \overline{Q}_P yields an estimator r_n of $\rho(P)$,

 $r_n: w \mapsto \underset{\tilde{a} \in \{0,1,2\}}{\operatorname{arg\,max}} \bar{Q}_n(\tilde{a}, w)$

. . c

- Building an estimator \overline{Q}_n of \overline{Q}_P is a regression task
- There exist many (many (many)) algorithms to learn \bar{Q}_P
- Instead of choosing one algorithm, we learn which one performs best for the task at hand
- We rely on super learning (van der Laan et al, 2007, $\{\ldots\}$):
 - an aggregation procedure based on cross-validation and the choice of a loss function tailored to the task at hand
 - where the candidate algorithms write as $Q = Algo_{regression} \circ Algo_{screening}$

- Building an estimator \overline{Q}_n of \overline{Q}_P is a regression task
- There exist many (many (many)) algorithms to learn \bar{Q}_P
- Instead of choosing one algorithm, we learn which one performs best for the task at hand
- We rely on super learning (van der Laan et al, 2007, $\{\ldots\}$):
 - an aggregation procedure based on cross-validation and the choice of a loss function tailored to the task at hand
 - where the candidate algorithms write as $Q = Algo_{regression} \circ Algo_{screening}$
- As often, there are a lot of missing data in our data set

- Building an estimator \overline{Q}_n of \overline{Q}_P is a regression task
- There exist many (many (many)) algorithms to learn \bar{Q}_P
- Instead of choosing one algorithm, we learn which one performs best for the task at hand
- We rely on super learning (van der Laan et al, 2007, $\{\ldots\}$):
 - an aggregation procedure based on cross-validation and the choice of a loss function tailored to the task at hand
 - where the candidate algorithms write as $Q = Algo_{regression} \circ Algo_{screening}$
- As often, there are a lot of missing data in our data set
- We adapt the SuperLearner R-package (Polley et al., 2021) and propose the missSuperLearner R-package
 - which deals with missing data
 - where the candidate algorithms write as $Q = Algo_{regression} \circ Algo_{screening} \circ Algo_{filling in}$

- Building an estimator \overline{Q}_n of \overline{Q}_P is a regression task
- There exist many (many (many)) algorithms to learn \bar{Q}_P
- Instead of choosing one algorithm, we learn which one performs best for the task at hand
- We rely on super learning (van der Laan et al, 2007, $\{\ldots\}$):
 - an aggregation procedure based on cross-validation and the choice of a loss function tailored to the task at hand
 - where the candidate algorithms write as $Q = Algo_{regression} \circ Algo_{screening}$
- As often, there are a lot of missing data in our data set
- We adapt the SuperLearner R-package (Polley et al., 2021) and propose the missSuperLearner R-package
 - which deals with missing data
 - where the candidate algorithms write as $Q = Algo_{regression} \circ Algo_{screening} \circ Algo_{filling in}$
- A question remains: which loss function?

Value of a recommendation rule

• Given a recommendation rule $r: \mathcal{W} \to \{0, 1, 2\}$, the value of r is

 $\mathcal{V}_r(P) := E_P\{\bar{Q}_P(r(W), W)\}$

• note: $\mathcal{V}_r(P) \leq \mathcal{V}_{\rho(P)}(P)$ by definition of $\rho(P)$

Value of a recommendation rule

• Given a recommendation rule $r: \mathcal{W} \to \{0, 1, 2\}$, the value of r is

 $\mathcal{V}_r(P) := E_P\{\bar{Q}_P(r(W), W)\}$

- note: $\mathcal{V}_r(P) \leq \mathcal{V}_{\rho(P)}(P)$ by definition of $\rho(P)$
- Back to the question: which loss function?

Value of a recommendation rule

• Given a recommendation rule $r: \mathcal{W} \to \{0, 1, 2\}$, the value of r is

 $\mathcal{V}_r(P) := E_P\{\bar{Q}_P(r(W), W)\}$

- note: $\mathcal{V}_r(P) \leq \mathcal{V}_{\rho(P)}(P)$ by definition of $\rho(P)$
- Back to the question: which loss function?
 - archetypal example: in a regression framework, the least-squares loss function

 $ar{Q}\mapsto \ell_2(ar{Q})$ s.t. $\ell_2(ar{Q}):(w,t,y)\mapsto (y-ar{Q}(ar{a},w))^2$

induces the least-squares risk $\mathcal{R}_{P}^{\ell_{2}}: \bar{Q} \mapsto E_{P}\{\ell_{2}(\bar{Q})(O)\}$

Value of a recommendation rule

• Given a recommendation rule $r : W \to \{0, 1, 2\}$, the value of r is

 $\mathcal{V}_r(P) := E_P\{\bar{Q}_P(r(W), W)\}$

- note: $\mathcal{V}_r(P) \leq \mathcal{V}_{\rho(P)}(P)$ by definition of $\rho(P)$
- Back to the question: which loss function?
 - archetypal example: in a regression framework, the least-squares loss function

 $ar{Q}\mapsto \ell_2(ar{Q})$ s.t. $\ell_2(ar{Q}):(w,t,y)\mapsto (y-ar{Q}(ar{a},w))^2$

induces the least-squares risk $\mathcal{R}_{P}^{\ell_{2}}: \bar{Q} \mapsto \mathcal{E}_{P}\{\ell_{2}(\bar{Q})(O)\}$

by analogy, the loss function

 $r\mapsto \ell_{\bar{Q}}(r) \quad ext{s.t.} \quad \ell_{\bar{Q}}(r): (w,t,y)\mapsto -\bar{Q}(r(w),w)$

induces the negative-value risk $\mathcal{R}_{P}^{\ell\bar{Q}}: r \mapsto E_{P}\{\ell_{\bar{Q}}(r)(O)\}$

- note: if $\bar{Q} = \bar{Q}_P$, then $\mathcal{R}_P^{\ell \bar{Q}} = -\mathcal{V}_r(P)$
- challenge: the loss function is indexed by the nuisance parameter \bar{Q}

A tailored cross-validated risk

- Let $B_n \in \{0,1\}^n$ be a random vector drawn independently of O_1, \ldots, O_n , $n := 0.7 \times N$, and
 - P_n , the data set $\{O_1, \ldots, O_n\}$ (viewed as a prob. measure)
 - P_{n,B_n}^0 , the B_n -specific training data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 0\}$ (viewed as a prob. measure)
 - P_{n,B_n}^1 , the B_n -specific testing data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 1\}$ (viewed as a prob. measure)

A tailored cross-validated risk

- Let $B_n \in \{0,1\}^n$ be a random vector drawn independently of O_1, \ldots, O_n , $n := 0.7 \times N$, and
 - P_n , the data set $\{O_1, \ldots, O_n\}$ (viewed as a prob. measure)
 - P_{n,B_n}^0 , the B_n -specific training data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 0\}$ (viewed as a prob. measure)
 - P_{n,B_n}^1 , the B_n -specific testing data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 1\}$ (viewed as a prob. measure)

 $\mathcal{R}_{P,n}(\mathsf{Algo}) := E_{B_n}\left[E_{P_{n,B_n}^1}\left\{\ell_{\bar{Q}_n^*}(r_n^0)(O)\right\}\right]$

A tailored cross-validated risk

- Let $B_n \in \{0,1\}^n$ be a random vector drawn independently of O_1, \ldots, O_n , $n := 0.7 \times N$, and
 - P_n , the data set $\{O_1, \ldots, O_n\}$ (viewed as a prob. measure)
 - P_{n,B_n}^0 , the B_n -specific training data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 0\}$ (viewed as a prob. measure)
 - P_{n,B_n}^1 , the B_n -specific testing data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 1\}$ (viewed as a prob. measure)

A tailored cross-validated risk

- Let $B_n \in \{0,1\}^n$ be a random vector drawn independently of O_1, \ldots, O_n , $n := 0.7 \times N$, and
 - P_n , the data set $\{O_1, \ldots, O_n\}$ (viewed as a prob. measure)
 - P_{n,B_n}^0 , the B_n -specific training data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 0\}$ (viewed as a prob. measure)
 - P_{n,B_n}^1 , the B_n -specific testing data set $\{O_i : 1 \le i \le n \text{ s.t. } B_n(i) = 1\}$ (viewed as a prob. measure)

 $\mathcal{R}_{P,n}(\mathsf{Algo}) := E_{B_n}\left[E_{P_{n,B_n}^1}\left\{\ell_{\bar{Q}_n^*}(r_n^0)(O)\right\}\right]$

- The "discrete" super learner:
- Our recommendation rule:

 $Algo_{SL} := \arg\min_{Algo} \mathcal{R}_{P,n}(Algo)$

the rule r_n derived from $\bar{Q}_n = \text{Algo}_{\text{SL}}(P_n)$

Early blood transfer in the ICU

Traumabase: a French observatory for major trauma

A recommendation rule

Learning a recommendation rule

Evaluating the recommendation rule

Analyzing the recommendation rule

Discussion

- From now on, we consider r_n as a fixed recommendation rule
- What is its value $V_{r_n}(P)$? We estimate it by CV-TMLE (Zheng & van der Laan, 2011), using O_{n+1}, \ldots, O_N

- From now on, we consider r_n as a fixed recommendation rule
- What is its value $V_{r_n}(P)$? We estimate it by CV-TMLE (Zheng & van der Laan, 2011), using O_{n+1}, \ldots, O_N
- Let $B_N \in \{0,1\}^{N-n}$ be a random vector drawn independently of O_{n+1}, \ldots, O_N , $n := 0.7 \times N$, and
 - P_N , data set $\{O_{n+1}, \ldots, O_N\}$ excluding observations with missing data
 - P_{N,B_N}^0 , the corresponding B_N -specific training data set
 - P_{N,B_N}^1 , the corresponding B_N -specific testing data set

- From now on, we consider r_n as a fixed recommendation rule
- What is its value $V_{r_n}(P)$? We estimate it by CV-TMLE (Zheng & van der Laan, 2011), using O_{n+1}, \ldots, O_N
- Let $B_N \in \{0,1\}^{N-n}$ be a random vector drawn independently of O_{n+1}, \ldots, O_N , $n := 0.7 \times N$, and
 - P_N , data set $\{O_{n+1}, \ldots, O_N\}$ excluding observations with missing data
 - $P_{N,B_{N}}^{0}$, the corresponding B_{N} -specific training data set
 - P_{N,B_N}^1 , the corresponding B_N -specific testing data set
- The estimator of $\mathcal{V}_{r_n}(P) := E_P\{\bar{Q}_P(r_n(W), W)\}$ is

 $\nu_{N} := E_{B_{N}}\left[E_{P_{N,B_{N}}^{1}}\left\{\bar{Q}_{N}^{*}(r_{n}(W),W)\right\}\right]$

- From now on, we consider r_n as a fixed recommendation rule
- What is its value V_{rn}(P)? We estimate it by CV-TMLE (Zheng & van der Laan, 2011), using O_{n+1},..., O_N
- Let $B_N \in \{0,1\}^{N-n}$ be a random vector drawn independently of O_{n+1},\ldots,O_N , $n:=0.7\times N$, and
 - P_N , data set $\{O_{n+1}, \ldots, O_N\}$ excluding observations with missing data
 - P_{N,B_N}^0 , the corresponding B_N -specific training data set
 - P_{N,B_N}^1 , the corresponding B_N -specific testing data set
- The estimator of $\mathcal{V}_{r_n}(P) := E_P\{\overline{Q}_P(r_n(W), W)\}$ is

- From now on, we consider r_n as a fixed recommendation rule
- What is its value $V_{r_n}(P)$? We estimate it by CV-TMLE (Zheng & van der Laan, 2011), using O_{n+1}, \ldots, O_N
- Let $B_N \in \{0,1\}^{N-n}$ be a random vector drawn independently of O_{n+1}, \ldots, O_N , $n := 0.7 \times N$, and
 - P_N , data set $\{O_{n+1}, \ldots, O_N\}$ excluding observations with missing data
 - P_{N,B_N}^0 , the corresponding B_N -specific training data set
 - P_{N,B_N}^1 , the corresponding B_N -specific testing data set
- The estimator of $\mathcal{V}_{r_n}(P) := E_P\{\bar{Q}_P(r_n(W), W)\}$ is

$$\nu_N := \mathbf{E}_{B_N} \left[\mathbf{E}_{\mathbf{P}_{N,B_N}^1} \left\{ \bar{\mathbf{Q}}_N^*(\mathbf{r}_n(W), W) \right\} \right]$$

• Under mild assumptions, ν_N is asymptotically Gaussian with an asymptotic variance that can be conservatively estimated

A. Chambaz

Early blood transfer in the ICU

Early blood transfer in the ICU

Traumabase: a French observatory for major trauma

A recommendation rule

Learning a recommendation rule

Evaluating the recommendation rule

Analyzing the recommendation rule

Discussion

Analyzing the recommendation rule

Variable importance measures (1/2)

Definition and estimation

• Our recommendation rule r_n is a complex object. How does it function? What is the influence of each covariate on $r_n(W)$? What does that even mean?

Definition and estimation

- Our recommendation rule r_n is a complex object. How does it function? What is the influence of each covariate on $r_n(W)$? What does that even mean?
- Inspired by (Williamson et al., 2021, 2022) we introduce, for every $W_s \subset W$,

$$\Psi_{s}(P) := \frac{E_{P}\left\{\left[r_{n}(W) - E_{P}(r_{n}(W)|W_{-s})\right]^{2}\right\}}{\operatorname{Var}_{P}(r_{n}(W))} \in [0, 1]$$

Definition and estimation

- Our recommendation rule r_n is a complex object. How does it function? What is the influence of each covariate on $r_n(W)$? What does that even mean?
- Inspired by (Williamson et al., 2021, 2022) we introduce, for every $W_s \subset W$,

$$\Psi_{s}(P) := \frac{E_{P}\left\{\left[r_{n}(W) - E_{P}(r_{n}(W)|W_{-s})\right]^{2}\right\}}{\operatorname{Var}_{P}(r_{n}(W))} \in [0, 1]$$

• if $\Psi_s(P) = 0$, then W_s plays no role in $r_n(W)$

1

- if $\Psi_s(P) \neq 0$, then we can build a consistent, asymptotically Gaussian estimator $\psi_{N,s}$ of $\Psi_s(P)$
- if $\Psi_s(P) = 0$, then $\psi_{N,s}$ is no longer asymptotically Gaussian!
- testing " $\Psi_s(P) = 0$ " against " $\Psi_s(P) \neq 0$ " is not easy...

Testing

• Inspired by (Hudson et al., 2022) we note that, for every $W_s \subset W$,

if $\Psi_s(P) = 0$, then for each $h : \mathcal{W} \to \mathbb{R}$, $\Phi_{s,h}(P) := E_P \{ [r_n(W) - E_P(r_n(W)|W_{-s})] h(W) \} = 0$

Testing

• Inspired by (Hudson et al., 2022) we note that, for every $W_s \subset W$,

if $\Psi_s(P) = 0$, then for each $h : \mathcal{W} \to \mathbb{R}$, $\Phi_{s,h}(P) := E_P \{ [r_n(\mathcal{W}) - E_P(r_n(\mathcal{W})|\mathcal{W}_{-s})] h(\mathcal{W}) \} = 0$

• So, given a RKHS and its approximation \mathcal{H} generated by the K first eigenfunctions (with a constraint on the norms of its elements), we decide to test

 $H_{0,s}: \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) = 0" \text{ against } \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) \neq 0"$

and to reject " $\Psi_s(P) = 0$ " for " $\Psi_s(P) \neq 0$ " if we reject $H_{0,s}$ for $\neg H_{0,s}$

Testing

• Inspired by (Hudson et al., 2022) we note that, for every $W_s \subset W$,

if $\Psi_s(P) = 0$, then for each $h : W \to \mathbb{R}$, $\Phi_{s,h}(P) := E_P \{ [r_n(W) - E_P(r_n(W)|W_{-s})] h(W) \} = 0$

• So, given a RKHS and its approximation \mathcal{H} generated by the K first eigenfunctions (with a constraint on the norms of its elements), we decide to test

$$H_{0,s}: \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) = 0" \quad \text{against} \quad \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) \neq 0"$$

and to reject " $\Psi_s(P) = 0$ " for " $\Psi_s(P) \neq 0$ " if we reject $H_{0,s}$ for $\neg H_{0,s}$

• Using influence-curve-based estimators of any $\Phi_{s,h}(P)$ $(h \in \mathcal{H})$, we can build an estimator ω_N of $\sup_{h \in \mathcal{H}} \Phi_{s,h}(P)$ by solving an optimization programme

Testing

• Inspired by (Hudson et al., 2022) we note that, for every $W_s \subset W$,

if $\Psi_s(P) = 0$, then for each $h : W \to \mathbb{R}$, $\Phi_{s,h}(P) := E_P \{ [r_n(W) - E_P(r_n(W)|W_{-s})] h(W) \} = 0$

• So, given a RKHS and its approximation \mathcal{H} generated by the K first eigenfunctions (with a constraint on the norms of its elements), we decide to test

$$H_{0,s}: \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) = 0" \quad \text{against} \quad \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) \neq 0"$$

and to reject " $\Psi_s(P) = 0$ " for " $\Psi_s(P) \neq 0$ " if we reject $H_{0,s}$ for $\neg H_{0,s}$

- Using influence-curve-based estimators of any $\Phi_{s,h}(P)$ $(h \in \mathcal{H})$, we can build an estimator ω_N of $\sup_{h \in \mathcal{H}} \Phi_{s,h}(P)$ by solving an optimization programme
- A multiplier bootstrap procedure allows to approximate the law of ω_N under the null

Testing

• Inspired by (Hudson et al., 2022) we note that, for every $W_s \subset W$,

if $\Psi_s(P) = 0$, then for each $h : W \to \mathbb{R}$, $\Phi_{s,h}(P) := E_P \{ [r_n(W) - E_P(r_n(W)|W_{-s})] h(W) \} = 0$

• So, given a RKHS and its approximation \mathcal{H} generated by the K first eigenfunctions (with a constraint on the norms of its elements), we decide to test

$$H_{0,s}: \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) = 0" \quad \text{against} \quad \sup_{h \in \mathcal{H}} \Phi_{s,h}(P) \neq 0"$$

and to reject " $\Psi_s(P) = 0$ " for " $\Psi_s(P) \neq 0$ " if we reject $H_{0,s}$ for $\neg H_{0,s}$

- Using influence-curve-based estimators of any $\Phi_{s,h}(P)$ $(h \in \mathcal{H})$, we can build an estimator ω_N of $\sup_{h \in \mathcal{H}} \Phi_{s,h}(P)$ by solving an optimization programme
- \bullet A multiplier bootstrap procedure allows to approximate the law of $\omega_{\it N}$ under the null
- Thus we can test $H_{0,s}$ against $\neg H_{0,s}$, and provide *p*-values

Early blood transfer in the ICU

Traumabase: a French observatory for major trauma

A recommendation rule

Learning a recommendation rule

Evaluating the recommendation rule

Analyzing the recommendation rule

Discussion

• Work still in progress:

theory \checkmark coding \checkmark simulation study \checkmark real data cleaning \checkmark real data application ongoing

• Work still in progress:

theory \checkmark coding \checkmark simulation study \checkmark real data cleaning \checkmark real data application ongoing

• A few insights:

Discussion

Work still in progress:

theory \checkmark coding \checkmark simulation study \checkmark real data cleaning \checkmark real data application ongoing

- A few insights:
 - the empirical probability of survival equals ~90%: difficult to perform as well
 - in ABC (more severe) patients, the empirical probability of survival equals ~70%: perhaps less challenging to do as well or even better
 - we rely on ~20 Algo_{regression}, ~5 Algo_{screening}, 3 Algo_{filling in}
 - results of simulation study encouraging
 - choice of \mathcal{H} is a delicate matter (chose K = 20)
 - in preliminary results,
 - the estimated values of the rules were quite close to one another
 - across the validation data, the recommendation rule's suggestions differed in law from the actual interventions

Discussion

Work still in progress:

theory \checkmark coding \checkmark simulation study \checkmark real data cleaning \checkmark real data application ongoing

- A few insights:
 - the empirical probability of survival equals ~90%: difficult to perform as well
 - in ABC (more severe) patients, the empirical probability of survival equals ~70%: perhaps less challenging to do as well or even better
 - we rely on ~20 Algo_{regression}, ~5 Algo_{screening}, 3 Algo_{filling in}
 - results of simulation study encouraging
 - choice of \mathcal{H} is a delicate matter (chose K = 20)
 - in preliminary results,
 - the estimated values of the rules were quite close to one another
 - across the validation data, the recommendation rule's suggestions differed in law from the actual interventions
- Thank you very much for your attention. Any question?

References (a few among many)

- Duranteau et al., Recommandation sur la réanimation du choc hémorragique, Anesth Reanim, 1:62-74, 2015
- Hudson, Carone, Shojaie, Inference on function-valued parameters using a restricted score test, arXiv preprint arXiv:2105.06646, 2021
- Luedtke, van der Laan, Super learning of an optimal dynamic treatment rule, Int J Biostat, 12(1):305-332, 2016;
- Montoya et al., Estimators for the value of the optimal dynamic treatment rule with application to criminal justice interventions, Int J Biostat, to appear, 2023
- Montoya et al., The optimal dynamic treatment rule super learner: considerations, performance, and application to criminal justice interventions, Int J Biostat, to appear, 2023
- Spahn et al., The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition, Critical Care, 23:98, 2019
- van der Laan, Polley, Hubbard, Super learner, Stat Appl Genet Mol Biol, 6(1), 2007
- van der Laan, Luedtke, Targeted learning of the mean outcome under an optimal dynamic treatment rule, J Causal Inference, 3(1):61-95, 2015
- van der Laan, Rubin, Targeted maximum likelihood learning, Int J Biostat, 2(1), 2006
- Williamson et al., Nonparametric variable importance assessment using machine learning techniques, Biometrics, 77(1):9-22, 2021
- Williamson et al., A general framework for inference on algorithm-agnostic variable importance, JASA, pages 1-14, to appear, 2022
- Zheng, van der Laan, Cross-validated targeted minimum-loss-based estimation, biik chapter in Targeted learning, 459–474, Springer Ser. Statist.,
 Springer, New York, 2011