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Context and motivation



FlipTest [Black et al., 2020]

Fairness/XAI framework motivated by questions framed as

Had an individual been of a different protected status, would the
model have treated them differently?

Relies on optimal transport (OT) rather than structural causal
models (SCM) to compute counterfactual counterparts.

• OT matches two observable distributions (e.g., females to males)
• operations on an SCM enable to generate alternative individuals
after a feature modification (e.g., change of sex)
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Example: the Law dataset

Black and white students described by (LSAT,GPA),

along with the
white counterfactual counterparts of the black students.

Figure 1: OT generated Figure 2: SCM generated

“FlipTest can give nearly identical results as causally generated
counterfactuals.” [Black et al., 2020]
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Question

Are OT counterfactuals and SCM counterfactuals equal?

Yes, under some specific assumptions.

4



Question

Are OT counterfactuals and SCM counterfactuals equal?

Yes, under some specific assumptions.

4



Optimal transport



Random and deterministic couplings

P ,Q two Borel probability distributions on Rd

• Π(P ,Q) set of joint probability distributions with P and Q as
first and second marginals.

• T (P ,Q) set of measurable maps pushing forward P to Q

T ∈ T (P ,Q) ⇐⇒ T♯P = Q ⇐⇒ (X ∼ P =⇒ T (X) ∼ Q).

A coupling π ∈ Π(P ,Q) matches every instance from P to one or
several instances from Q with probability weights.

π is deterministic if it concentrates on the graph of a map
T ∈ T (P ,Q), formally π = (I × T )♯P .
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Optimal transport [Villani, 2008]

• P ,Q Borel probability distributions on Rd

• c : Rd × Rd → R+ cost function, typically c(x, x′) := ∥x− x′∥2

OT looks for couplings in Π(P ,Q), or maps in T (P ,Q), that are
optimal in the sense of c.

Figure 3: Illustration from David Alvarez-Melis and Nicolo Fusi
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Optimal transport [Villani, 2008]

Monge problem:
min

T∈T (P,Q)

∫
c(x, T (x))dP (x)

Kantorovich problem:

min
π∈Π(P,Q)

∫∫
c(x, x′)dπ(x, x′)

People are interested in either

• the value of the minimum, to define metrics between
distributions (e.g., Wasserstein distances)

• or the minimizers of these programs, to define matchings
between distributions (e.g., fairness, domain adaptation)
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Example

Output of a POT solver for the
Monge problem
[Flamary et al., 2021]

Computed on 800/800 points

Represented on 200/200 points
Figure 4: Estimated OT map
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Structural counterfactuals



Pearl’s causal framework [Pearl, 2009]

Exogenous U = (U1, U2, . . .)

Immutable, prior knowledge

Endogenous
V = (X1, X2, . . . , Xd, S)

Defined as
Vi = Gi(VEndo(i), UExo(i))

Solvability: There exists a solution map Γ such that V = Γ(U)

In particular X = F (S,UX)
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Do-intervention and counterfactuals

The operation do(S = s′) forces the sensitive variable to take the
fixed value s′ while keeping the rest of the causal equations
untouched.

X = F (S,UX)
do(S=s′)−−−−−−→ XS=s′ = F (s′, UX)

The counterfactual counterparts of an instance {X = x, S = s}, Had
S been equal to s′ instead of s, are given by the distribution

L(XS=s′ | X = x, S = s).

It can be generated by estimating and sampling from
L(UX | X = x, S = s).
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Example

Structural equations
[Kusner et al., 2017]:

X1 = w1S + U1

X2 = w2S + U2

U1 ⊥⊥ U2. Figure 5: SCM counterfactuals

Obs 1: deterministic counterfactuals (i.e., one-to-one)

Obs 2: white counterfactuals seem to agree with white factuals
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The mass-transportation
viewpoint of structural
counterfactuals



Counterfactual inference as mass transportation

The effect of do(S = s′|S = s) is fully characterized by the coupling

π∗
⟨s′|s⟩ := L ((X,XS=s′)|S = s) .

It assigns a probability to all the pairs (x, x′) between an observable
value x and a counterfactual counterpart x′.

This coupling admits µs := L(X|S = s) as first marginal and
µ⟨s′|s⟩ := L(XS=s′ |S = s) as second marginal.

Remark: Therefore, π∗
⟨s′|s⟩ ∈ Π(µs, µ⟨s′|s⟩) ̸= Π(µs, µs′).
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The exogenous case

Assumption (RE):
1. S does not have endogenous
parents

2. US ⊥⊥ UX

S X

UXUS

Figure 6: DAG satisfying (RE)

Proposition
If (RE) holds, then S ⊥⊥ UX and

µ⟨s′|s⟩ = µs′

Consequence: π∗
⟨s′|s⟩ ∈ Π(µs, µs′).
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The deterministic case

Reminder: X = F (S,UX)

Assumption (I): Knowing S = s, the model induces a one-to-one
relationship between X values and UX values:

The function fs := F (s, ·) is injective

Proposition
If (I) holds, then µs-almost every instance x admits a unique
counterfactual counterpart x′ = T ∗

⟨s′|s⟩(x) where

T ∗
⟨s′|s⟩ := fs′ ◦ f−1

s .

Holds in every additive model, where UX is additive in the causal
equations
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An example

Linear additive SCM:

S = . . .

X = MX + wS + b+ UX

Acyclicity implies that I −M is invertible so that

X = (I −M)−1(wS + b+ UX) =: F (S,UX).

Consequently,

T ∗
⟨s′|s⟩(x) := x+ (I −M)−1w(s′ − s).
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Checkpoint

¬(RE) (RE)
¬(I) π∗

⟨s′|s⟩ ∈ Π(µs, µ⟨s′|s⟩) π∗
⟨s′|s⟩ ∈ Π(µs, µs′)

(I) T ∗
⟨s′|s⟩♯

µs = µ⟨s′|s⟩ T ∗
⟨s′|s⟩♯

µs = µs′

Effect of do(S = s′ | S = s)
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When quadratic optimal
transport meets causality



Theorem [De Lara et al., 2021]

OT: c(x, x′) = ∥x− x′∥2, X has a density and a finite second-order
moment

=⇒ unique solution T⟨s′|s⟩ to the OT problem

SCM: (RE) and (I) hold

=⇒ counterfactuals given by T ∗
⟨s′|s⟩♯

µs = µs′

T ∗
⟨s′|s⟩ = T⟨s′|s⟩ ⇐⇒ fs′ ◦ f−1

s is the gradient of a convex function

Condition satisfied in any linear additive model
(e.g., the Law dataset)
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Quadratic optimal transport

Monotone measure-preserving map
If P and Q are absolutely continuous w.r.t. Lebesgue measure, then
there exists a convex potential ϕ : Rd → R such that ∇ϕ♯P = Q.
The map T := ∇ϕ is unique P -almost everywhere.

Optimal transport map
If P and Q are absolutely continuous w.r.t. Lebesgue measure and
have finite second order moments, then there exists a unique
solution to

min
π∈Π(P,Q)

∫∫
∥x− x′∥dπ(x, x′),

which is π := (I × T )♯P where T is “the” monotone
measure-preserving map from P to Q.
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Nonlinear nonadditive positive example

SCM:

X1 = α(S)U1 + β1(S)

X2 = −α(S) ln2
(
X1 − β1(S)

α(S)

)
U2 + β2(S)

S = US ⊥⊥ (U1, U2)

Counterfactuals:

T ∗
⟨s′|s⟩(x) =

α(s′)

α(s)
x+ [β(s′)− β(s)]

If α(·) > 0, this is the gradient of a convex function.

19
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Conclusion



And so what?

OT counterfactuals and SCM counterfactuals share a common
mass-transportation formalism, and can even coincide, making them
natural surrogate

Practical interest: For feasibility reasons, use OT solutions instead of
SCMs in counterfactual frameworks (see [Black et al., 2020] and
[De Lara et al., 2021] for applications)

Theoretical interest: Reformulating counterfactual reasoning as a
mass transportation problem allows new results and proofs (see
[De Lara et al., 2021])
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Final word

Optimal transport (a statistical tool) meets causality (under some
assumptions)
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