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Motivation

Why can providing "precise" estimates of individual treatment effects (ITE) be
challenging even in RCTs?

▶ Treatment effect may vary conditioned on a variable not affecting the treatment!
▶ Adjustment variables: Variables affecting response and not treatment.
▶ Effect modifiers: Adjustment variables that change the causal effect.
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Motivation

Do we really need adjustment variables?

▶ For individual treatment effects, yes!
▶ Needed as much as confounders (we assume sequential ignorability!).
▶ Know what affects the response  Estimate precise response trajectories.
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Motivation

What can we do when we have?:
▶ Longitudinal data.
▶ Individual treatment effects are the target.
▶ Adjustment variables are not observed.
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Motivation

When does causal inference meet statistics in our problem?
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Motivation

Classically, when we have:

▶ Unobserved sources of heterogeneity.
▶ Individual response trajectories are of interest.

We can perform a mixed effect modeling:

▶ A Parametric model over the response.
▶ Some parameters vary randomly among individuals.
▶ Intuition: random parameters capture heterogeneity.
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Example

Yt−2

Wt−2

Xt−2

Yt−1

Wt−1

Xt−1

Yt

Wt

Xt

U

▶ Y: Vital indicator.
▶ W: Taking some vitamin (0 or 1).
▶ X: Confounder, say financial resources.
▶ U: unobserved effect modifier (say

age).
▶ Goal: Individual effect of Wt → Yt.
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Example

Yt−2
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U ▶ A mixed effect modeling:

E(Yi,t | Wi,t,Xi,≤t,Yi,<t, α
(1)
i , α

(2)
i ) = γ1Yi,t−1 + γ2Yi,t−2 + (β1Yi,t−1 + (β2 + α

(1)
i )Xi,t + α

(2)
i )︸ ︷︷ ︸

ITE

Wi + β3Xi,t.

▶ Yt−1 is an effect modifier!
▶ Yt−2 is not effect modifier! (still an adjustment

variable).
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Example
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E(Yi,t | Wi,t,Xi,≤t,Yi,<t, α
(1)
i , α

(2)
i ) = γ1Yi,t−1 + γ2Yi,t−2 + (β1Yi,t−1 + (β2 + α

(1)
i )Xi,t + α

(2)
i )︸ ︷︷ ︸

ITE

Wi + β3Xi,t.

▶ γ = (γ1, γ2), β = (β1, β2, β3) Non-random
parameters (fixed effects).

▶ αi = (α
(1)
i , α

(2)
i ) random parameters (random

effects).
▶ αi: Accounts for unobserved factors of variation

(Our U).
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Example
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▶ A mixed effect modeling:

E(Yi,t | Wi,t,Xi,≤t,Yi,<t, α
(1)
i , α

(2)
i ) = γ1Yi,t−1 + γ2Yi,t−2 + (β1Yi,t−1 + (β2 + α

(1)
i )Xi,t + α

(2)
i )︸ ︷︷ ︸

ITE

Wi + β3Xi,t.

▶ Let’s see αi as a random variable.
▶ Let’s connect αi to unobserved Ui:

αi = α(Ui) := (α(1)(Ui), α
(2)(Ui)).

▶ α(1), α(2) : Ui −→ R: arbitrary unknown mappings.
E(Yi,t | Wi,t,Xi,≤t,Yi,<t,Ui)︸ ︷︷ ︸

E(Yi,t|pa(Yi,t))

= γ1Yi,t−1 + γ2Yi,t−2 + (β1Yi,t−1 + (β2 + α
(1)
i (Ui))Xi,t + α

(2)
i (Ui))︸ ︷︷ ︸

ITE

Wi + β3Xi,t.
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Assumptions

Suppose

▶ The causal graph is known.
▶ Sequential ignorability.
▶ Some static effect modifiers

are unobserved.

We suggest:
▶ Instead of learning random parameters αi:

▶ See unobserved adjustment variables as
latents.

▶ Learn a representation of Ui.
▶ Model the mapping by highly flexible neural

networks.
▶ Condition the treatment effect on the

representation.
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Causal framework

▶ Binary treatment Wit  Two potential outcomes Yit(1),Yit(0).
▶ Sequential ignorability: Yit(ωit) ⊥⊥ Wit | Xi,≤t = xi,≤t,Yi,<t = yi,<t

▶ Causal quantity of interest:

τit := E(Yit(1)− Yit(0) | Xi,≤t = xi,≤t,Yi,<t = yi,<t, Ui = ui︸ ︷︷ ︸
To be constructed

)

▶ Identify:
τit = E(Yit | Xi,≤t = xi,≤t,Yi,<t = yi,<t,Ui = ui,Wit = 1)

− E(Yit | Xi,≤t = xi,≤t,Yi,<t = yi,<t,Ui = ui,Wit = 0)
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Modeling

▶ Conditional probabilistic model:

pθ(y≤T , u | x≤T , ω≤T) =

T∏
t=1

[pθ(yt | y<t, x≤t, ω≤t, u)] p(u)

▶ Use d-separation to simplify pθ(yt | y<t, x≤t, ω≤t, u).
▶ Define an inference model qϕ (u | y≤T , x≤T , ω≤T) that approximates

pθ (u | y≤T , x≤T , ω≤T).
▶ Consistency: Simplify qϕ (u | y≤T , x≤T , ω≤T) using d-separation.
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Modeling

▶ The Evidence Lower Bound (ELBO):

ELBO(θ, ϕ) =
T∑

t=1

Eqϕ(u|y≤T ,x≤T ,ω≤T)) [log pθ(yt | y<t, x≤t, ωt, u)]

− DKL(qϕ(u | y≤T , x≤T , ω≤T) || p(u))
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Counterfactual regression

▶ How to estimate individual treatment effects?:
▶ Make pθ(yt | y<t, x≤t, ω≤t, u) a TARNet style [1].
▶ Weighting with a function of the propensity scores αη(x≤t) = f (pη(Wt = 1 | x≤t)) [1], [2].
▶ Write a loss, weighting ELBO:

Ltotal(θ, ϕ, η) = −
T∑

t=1

αη(x≤t)︸ ︷︷ ︸
Weighting

Eqϕ(u|y≤T ,x≤T ,ω≤T))

log pθ(yt | y<t, x≤t, ωt, u)︸ ︷︷ ︸
Reconstruction


+ βDKL(qϕ(u | y≤T , x≤T , ω≤T) || p(u))︸ ︷︷ ︸

Regularization

+ LW(η)︸ ︷︷ ︸
loss for propensity
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Posterior collapse

▶ Avoid DKl ≈ 0  Cyclical scheduling of β [3].

we call the model:
▶ CDVAE: Causal Dynamic Variational Auto-encoder, β = 1
▶ βcyc-CDVAE: CDVAE with β updated cyclically.
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Simulation setup

Data simulated according to:

Y1

W1

X1

Y2

W2

X2

Y3

W3

X3

YT

WT

XT

U

..... ▶ Treatment effect to estimate:
τ(Xt,U) := exp( 1

dx

∑dx
j=1 Xt,j +

1
du

∑du
j=1 Uj)
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Results

Benchmark
▶ RMSMs: Recurrent Marginal Structural Models [4].
▶ CRN: Counterfactual Recurrent Network [5].
▶ CausalForestDML:Forest Double Machine Learning model [6], [7].

Model ϵATE MAE(τ) MAE(y) RMSE(τ) RMSE(y)
βcyc-CDVAE(ours) 0.07 ± 0.01 0.17 ± 0.02 0.17 ± 0.02 0.25 ± 0.02 0.22 ± 0.02

CDVAE(ours) 0.18 ± 0.03 0.23 ± 0.01 0.21 ± 0.01 0.29 ± 0.01 0.31 ± 0.02
CausalForestDML 0.002 ± 0.001 0.24 ± 0.01 0.78 ± 0.03 0.32 ± 0.02 0.95 ± 0.02

RMSM 1.18 ± 0.02 1.18 ± 0.02 0.44 ± 0.03 1.26 ± 0.03 0.64 ± 0.02
CRN 0.12 ± 0.01 0.34 ± 0.02 0.38 ± 0.01 0.46 ± 0.02 0.49 ± 0.02
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Whats happens during training?

Figure: CDVAE With cycling: Good balancing.
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Whats happens during training?

Figure: CDVAE Without cycling: Bad balancing.
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Conclusion

Pros:
▶ ITEs are better estimated.
▶ A good trade-off: being predictive of both responses and causal effects.
▶ Handling responses of different nature: continuous, discrete, . . .

Cons
▶ Difficulty in calibration: cycling strategy.

Prospects:

▶ How about unobserved time-varying adjustment variables?
▶ How about the individual effect of a sequence of interventions?
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Thanks for your attention!

Are there questions?
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