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Introduction

Time series are everywhere

Time series arise as soon as observations, from sensors or experiments,
for example, are collected over time

They are present in various forms in many different domains
Healthcare (through, e.g., monitoring systems)
Industry 4.0 (through, e.g., predictive maintenance and industrial monitoring
systems)
Surveillance systems (from images, acoustic signals, seismic waves, etc.)
Energy management (through, e.g. energy consumption data)
...
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Introduction

How to represent relations in time series?

ASSAAD, DEVIJVER AND GAUSSIER

( !) in the graph represent the existence of a hidden confounder whereas undirected edges (�)
represent unobserved selection bias variables that have been conditioned on rather than marginalized
over. MAGs6 are maximal in the sense that no additional edge may be added to the graph without
changing the independence model (Richardson & Spirtes, 2002). The notions introduced before can
readily be extended to MAGs.

Lastly, when the variables considered are temporal, then one can rely on the temporal priority
concept that goes back to Hume (1738) and is described by Rankin and McCormack (2013). In a
nutshell, it simply states that a cause precedes its effects.

Definition 5 (Temporal Priority) A causal relation between two variables is said to satisfy the
temporal priority if it is oriented in such a way that the cause occurred before its effect.

Temporal priority makes the process of causality asymmetric in time and is useful for orienting
a causal relation when one knows that two variables are causally related. That said, the difference
in time between two events associated to two time series may not be observed if the sampling fre-
quencies of the time series are small. It is thus possible that two events that occurred at different
time instants will be seen as instantaneous in the observational time series. Instantaneous causal re-
lations, sometimes called contemporaneous causal relations, correspond to causal relations between
causes and effects that occur at different time instants yet appear instantaneous.

2.2 Causal Graphs for Time Series
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Figure 5: Different causal graphs that one can infer from three time series: full time causal graph
(5a), window causal graph (5b) and summary causal graph (5c). Note that the first one gives more
information but cannot be inferred in practice, the second one is a schematic viewpoint of the full
behavior, whereas the last one give an overview and can be deduced from the window causal graph.

Causal discovery in time series aims at discovering, from observational data, causal relations
within and between d-variate time series X where, for a fixed t, each Xt is a vector (X 1

t , · · · ,X d
t )

in which each variable X p
t represents a measurement of the p-th time series at time t. There are

6. Similarly to DiGraphs, one can extend MAGs to take into account cycles and self loops.

6
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Introduction

Causal graphs in time series (1)

Assumption 1 - Temporal priority A cause does not occur after its effects
(maximal temporal lag)

The full story
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Assumption 2 - Consistency through time [causal stationarity] All causal
relationships remain constant in direction throughout time
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Introduction

Causal graphs in time series (2)

Summarizing the full-time window graph with or without loss of information:
window causal graph (a), extended summary causal graph (b) and summary
causal graph (c)
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Introduction

Causal graphs in time series (3)

Remarks
Window causal graphs equivalent to full-time graphs (cons. through time)
Unique extended summary causal graph for a given window causal graph
(reverse not true)
Unique summary causal graph for a given extended summary causal
graph (reverse not true)
Advantage/disadvantage of summary causal graphs

+ Easier to manipulate by experts
− Less precise than window causal graphs

Assumption 3 - Acyclicity All causal graphs are acyclic
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Introduction

Causal graphs in time series (3)

Remarks
Window causal graphs equivalent to full-time graphs (cons. through time)
Unique extended summary causal graph for a given window causal graph
(reverse not true)
Unique summary causal graph for a given extended summary causal
graph (reverse not true)
Advantage/disadvantage of summary causal graphs

+ Easier to manipulate by experts
− Less precise than window causal graphs

Assumption 3 - Acyclicity All causal causal graphs are acyclic

Focus on summary causal graphs (starting with extended summary causal
graphs) and continuous time series
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Introduction

Problem statement, Markov cond. and faithfulness

Problem: directly infer extended summary graph from observational data
(causal structure learning)

Markov condition A necessary and sufficient condition for a probability
distribution to be compatible with a DAG G is that every variable be
independent of all its nondescendants (in G), conditional on its parents
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Introduction

Problem statement, Markov cond. and faithfulness

Problem: infer extended summary graph from observational data (causal
structure learning)

Markov condition A necessary and sufficient condition for a probability
distribution to be compatible with a DAG G is that every variable be
independent of all its nondescendants (in G), conditional on its parents

Assumption 4 - Faithfulness We say that a graph G and a compatible
probability distribution P are faithful to one another if all and only the
conditional independence relations true in P are entailed by the Markov
condition applied to G
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Introduction

Truly causal methods?
General functional model of any potential effect X q

X q
t = f (Cq

t (X r1 ), · · · , Cq
t (X rq ), ξq

t )

f : any real-valued multivariate function
Cq : set of causes, Cq

t (X r ): past instants of X r which are actual causes
ξq

t : noise independent from all causes
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Truly causal methods aim at distinguishing causal correlations from spurious
correlations
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Introduction

Families of causal methods

Main families of causal methods
Granger causality, CCM causality, PAI causality
Constraint-based approaches, noise-based approaches, score-based
approaches, logic-based approaches

Focus on constraint-based approaches (and noise-based approaches):
popular, sound and complete, no assumption on f
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Causal discovery with and without causal sufficiency
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Causal discovery with and without causal sufficiency

PC with causal sufficiency

Assumption 5 - Causal sufficiency Observed variables are causally sufficient,
i.e., all common causes of all variables are observed
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Causal discovery with and without causal sufficiency
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Causal discovery with and without causal sufficiency

PC with causal sufficiency

Assumption 5 - Causal sufficiency Observed variables are causally sufficient,
i.e., all common causes of all variables are observed

The PC algorithm (Spirtes-2000; Colombo-2014)
1 Build complete undirected graph U between all pairs of variables
2 Set n = 0
3 For each pair of adjacent variables (X ,Y ) in (current) U such that

ADJ(U,X )− Y or ADJ(U,Y )− X has at leat n elements, check
conditional independence bet. X and Y with any subset of S of n
elements. If X |= Y |S, S = Sepset(X ,Y )

4 n = n + 1
5 Execute orientation rules on obtained skeleton using temporal priority

between the past and present slices

Conditional independence at the core of the procedure for constructing the
skeleton
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Causal discovery with and without causal sufficiency

Independence measure: mutual information

Mutual information ...
... has proven useful in several studies on causal inference (Affeldt-2015,
Runge-2019, Runge-2020)
... does not require assumptions on the generative model
... can be (somewhat) robustly estimated from observational data (k -NN)

Present slice Standard mutual information

Between past and present slices X p does not directly cause X q if there exists
a subset of time series XR such that ∀K ∈ Z∗,
∀{γ1, · · · , γK} s.t. 0 ≤ γK < · · · < γ1:

I(X q
t ; X p

t−γ1
, · · · ,X p

t−γK
|XR

t∗) = 0
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Causal discovery with and without causal sufficiency

Efficient estimation

One can efficiently identify independence between considering the window in
X p starting at t − γ and ending at t , denoted t−γ : t where γ is the maximal
gap:

Property

Let γ denote the maximum gap between a cause and its effect. The following
two propositions are equivalent:

(a) I(X q
t ; X p

t−γ1
, · · · ,X p

t−γK
|XR

t∗) = 0, ∀K ≥ 1, ∀γ1 > · · · > γK ≥ 0,

(b) I(X q
t ; X p

t−γ:t |XR
t∗) = 0
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Causal discovery with and without causal sufficiency

Illustration
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Causal discovery with and without causal sufficiency

Greedy causation entropy

Definition (causal gredy entropy)
The greedy causation entropy, denoted by GCE, from the time series X p to
the time series X q is defined by:

GCE(X p → X q) = I(X q
t ; X p

t−γ:t−1) (1)

Denoting by X R a set of m time series {X r1 , · · · ,X rm}, the conditional greedy
causation entropy takes the form:

GCE(X p → X q |X R) = I(X q
t ; X p

t−γ:t−1|X r1
t∗ , · · · ,X rm

t∗ ), (2)

where t∗ denotes either the present instant t or the time window t−γ : t−1

Estimation k -NN method (Frenzel-2007)
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Causal discovery with and without causal sufficiency

From a skeleton to a causal graph: orientation rules

PC-Rule 0 - Origin of causality
(i) In an unshielded triple X p

t − X r
t − X q

t , if X r
t /∈ Sepset(p ↔ q),

then X r
t is an unshielded collider: X p

t → X r
t ← X q

t

(ii) In an unshielded triple X q
t− → X q

t − X p
t , if X q

t /∈ Sepset(q → p),
then X q

t is an unshielded collider: X q
t− → X q

t ← X p
t

PC-Rule 1- Propagation of causality In an unshielded triple X p
t → X r

t − X q
t

(resp. X p
t− → X r

t − X q
t ), if X r

t ∈ Sepset(p ↔ q) then orient the unshielded
triple as X p

t → X r
t → X q

t (resp. X p
t− → X r

t → X q
t )

PC-Rule 2 If there exist a direct path from X p
t to X q

t and an edge between X p
t

and X q
t , then orient X p

t → X q
t

PC-Rule 3 Orient X p
t − X q

t as X p
t → X q

t whenever there are two paths
X p

t − X r
t → X q

t and X p
t − X s

t → X q
t
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Causal discovery with and without causal sufficiency

Wrapping-up

Simple algorithm with causal sufficiency:
Standard skeleton construction based on greedy causation entropy
More or less standard orientation rules operating on the present slice

Theoretical guarantees under assumptions made

Theorem

Let the distribution of V be faithful to a DAG G = (V ,E), and assume that we
are given perfect conditional independence information about all pairs of
variables (X p,X q) in V given subsets X R ⊆ V\{X p,X q}. Then the skeleton
constructed previously followed by the above orientation rules represents the
CPDAG of the extended summary causal graph G
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Causal discovery with and without causal sufficiency

FCI without causal sufficiency

1 Same skeleton construction as before
2 Orientation rules

FCI-Rule 0 (origin of causality) is adapted as before
FCI-Rules 1, 2, 3 and 4 (Spirtes-2000)
FCI-Rules 8, 9 and 10 (Zhang-2008) - rules 5, 6 and 7 deal with selection
bias

Remark Possible D-separation sets vs. separation sets, PAG (MAG) vs
CPDAG (DAG)
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Experiments

Experimental setting

Datasets, evaluation measures, methods

Simple artificial datasets correspond to three different causally sufficient
structures and two non causally sufficient structures generated by:

X q
t = aqq

t−1X q
t−1 +

∑
p

apq
t−γ f (X p

t−γ) + 0.1ξq
t

with γ ≥ 0, ajq
t ∼ U([−1;−0.1] ∪ [0.1; 1]), ξq

t ∼ N (0,1) and f chosen at
random in {absolute value, tanh, sine, cosine}

FMRI datasets for 28 different brain networks (Smith-2011)

F1-score (between and within time series)

PCMICI (Runge-2019, Runge-2020), oCSE (Sun-2015), tsFCI
(Entner-2010), VarLiNGAM (Hyvärinen-2010), Dynotears (Pamfil-2020),
GCMVL (Arnold-2017), TCDF (Nauta-2019)
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Experiments

Artificial datasets (extract)
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Experiments

Results

No hidden common causeTable 2: Results for simulated data without hidden common causes. The mean and the standard deviation of the F1 score are
reported and the best results are in bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL

4̊tst=0
Fp 6=q 0.62 ± 0.17 � 0.60 ± 0.12 0.32 ± 0.13 0.04 ± 0.12 0.00 ± 0.00 �
Fp=q 0.81 ± 0.12 � 0.87 ± 0.12 0.92 ± 0.07 0.37 ± 0.21 0.18 ± 0.24 �

4tst>0 Fp 6=q 0.71 ± 0.13 0.31 ± 0.21 0.67 ± 0.16 0.00 ± 0.00 0.16 ± 0.19 0.00 ± 0.00 0.52 ± 0.11

4̊tst>0
Fp 6=q 0.81 ± 0.18 0.78 ± 0.17 0.81 ± 0.12 0.00 ± 0.00 0.16 ± 0.19 0.04 ± 0.12 0.53 ± 0.09
Fp=q 0.94 ± 0.06 0.82 ± 0.11 0.97 ± 0.05 0.98 ± 0.04 0.47 ± 0.15 0.35 ± 0.27 �

the FMRI benchmark can only be represented by a summary
causal graph, we compare all methods based on the sum-
mary causal graph they infer (this graph is directly deduced
from the window causal graph or the extended summary
causal graph for methods inferring these types of graphs).

Methods: All the methods retained can either infer a win-
dow causal graph, from which one can deduce the corre-
sponding extended summary causal graph, or a summary
causal graph with no instantaneous relations so that the ex-
tended summary causal graph can also be deduced (this is
the case for oCSE and MVGCL presented below).

Among constraint-based methods, in addition to the pro-
posed PCGCE and FCIGCE, we retained the well-known
PCMCI4 [Runge et al., 2019, Runge, 2020] which infers a
window causal graph as well as oCSE [Sun et al., 2015],
relying on our implementation (see the code provided in the
Supplementary Material), which infers a summary causal
graph. For all those methods, the mutual information is esti-
mated using the k-nearest neighbour method with k fixed to
10; a significance local permutation test [Runge, 2018] with
kperm = 5 is furthermore used to assess whether the mutual
information values differ from 0 or not. For non causally
sufficient structures, we retained, in addition to FCIGCE,
the state-of-the-art tsFCI5 method [Entner and Hoyer, 2010]
on which we use tests of zero correlation or zero partial
correlation. The significance level of the test used is set to
0.05 for methods on causally sufficient structures (PCGCE,
PCMCI, oCSE) and to 0.1 for methods on non causally
sufficient structures (FCIGCE, tsFCI).

Among noise-based approaches, we retained the well-known
VarLiNGAM 6 method [Hyvärinen et al., 2010], in which
the regularization parameter in the adaptive Lasso is se-
lected using the Bayesian Information Criterion (no statis-
tical test is performed as we directly use the value of the
statistics). From the Granger family, we retained the stan-
dard lasso-based multivariate Granger (GCMVL) [Arnold
et al., 2007], which we re-implemented, and the recently
proposed TCDF7 [Nauta et al., 2019] with a kernel of size

4https://github.com/jakobrunge/tigramite
5https://sites.google.com/site/

dorisentner/publications/tsfci
6https://github.com/cdt15/lingam
7https://github.com/M-Nauta/TCDF

4, a dilation coefficient set to 4, one hidden layer, a learning
rate of 0.01, and 5000 epochs. Lastly, we retained, from
score-based approaches, the recently proposed Dynotears8

method [Pamfil et al., 2020], the hyperparameters of which
are set to their recommended values (�W = �A = 0.05 and
↵W = ↵A = 0.01).

For all the methods, we use � = 5. A Python routine to
use all the above methods is available in the Supplementary
Materials .

Evaluation Measures: To assess the quality of causal in-
ference, we use two different measures:

• Fp 6=q: the F1-score regarding causal relations between
two different time series;

• Fp=q : the F1-score regarding causal relations between
a time series and itself.

Results: Table 2 summarizes the results of the different
methods on causally sufficient simulated data. Overall, re-
garding causal relations between different time series (which
are not linear due to the generation process retained), for all
tested structures, PCGCE comes out on top. In particular,
PCGCE has the highest Fp 6=q in the structures 4̊tst=0 and
4tst>0, followed by PCMCI. In the structure 4̊tst>0 both
methods PCGCE and PCMCI obtain the same Fp 6=q . oCSE
is not evaluated on the structure 4tst=0 since it cannot deal
with instantaneous relations. However, for other structures,
oCSE yields a low Fp 6=q compared to other constraint-based
methods (PCGCE and PCMCI), especially for the structure
4tst>0. For non constraint-based methods, MVGCL (which,
as oCSE, cannot be evaluated on 4tst=0) comes out best. On
the other hand, Dynotears, VarLiNGAM and TCDF have
poor performance. The results obtained with Dynotears, Var-
LiNGAM and MVGCL are expected as these methods are
designed for linear relations (i.e., in our case, self causes); in
addition, VarLiNGAM is not capable of handling Gaussian
noise. Regarding Fp=q, VarLiNGAM performs best for all
structures followed by PCMCI and then by PCGCE. The
difference in the results of VarLiNGAM in Fp 6=q and Fp=q

is simply due to the fact that we considered non linear rela-
tions between two different time series but linear relations
when the causal relations are within the same time series.

8https://github.com/quantumblacklabs/
causalnex

No hidden common cause (FMRI)Table 3: Results for real data. The mean and the standard deviation of the F1 score are reported and the best results are in
bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL
FMRI Fp 6=q 0.31 ± 0.2 0.16 ± 0.19 0.22 ± 0.18 0.49 ± 0.28 0.34 ± 0.13 0.06 ± 0.12 0.35 ± 0.08

Table 3 summarizes the results obtained on the FMRI dataset
using Fp 6=q as the reference summary causal graph on this
dataset does not contain self causes. As for simulated data,
among constraint-based methods, PCGCE performs best
with a Fp 6=q significantly higher than the performance of
PCMCI and oCSE. However, overall, for this dataset, non
constraint-based methods, except TCDF, obtain better re-
sults. This suggests that the faithfulness assumption on
which constraint-based methods rely, is not satisfied on
this dataset.

Table 4: Results for simulated data with hidden common
causes. The mean and the standard deviation of the F1 score
are reported and the best results are in bold.

Perf. FCIGCE tsFCI TCDF
7t2ht>0 Fp 6=q 0.57 ± 0.1 0.52 ± 0.1 0.02 ± 0.1

˚7t2ht>0
Fp 6=q 0.33 ± 0.1 0.36 ± 0.1 0.07 ± 0.1
Fp=q 0.83 ± 0.1 0.99 ± 0.1 0.19 ± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two
non causally sufficient structures described above in Table 4.
For the first structure FCIGCE and tsFCI have the highest
performance, FCIGCE being above tsFCI. For the second
structure, tsFCI has the highest performance on both Fp 6=q

and Fp=q , followed by FCIGCE. TCDF performs poorly on
both structures. We conjecture here that FCIGCE suffers
from the use of a complete window when computing GCE,
which can lead to less stable experimental results when the
dataset is complex.

Time complexity: PC-based causal discovery algorithms
(with instantaneous causal relations) have the following
complexity, in terms of the number of independence tests
[Spirtes et al., 2000], on window causal graphs: (d(� +
1))2(d(� + 1)� 1)k�1/(2(k� 1)!), where d represents the
number of time series considered. Algorithms adapted to
time series, as PCMCI Runge [2020], rely on the assumption
of temporal priority and consistency throughout time to
reduce the number of tests. Our proposed method benefits
from a smaller number of tests compared to PC and PCMCI
if �max > 1. In the worst case, its complexity is: 4d2(2d�
1)k�1/(k � 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE
does not consider instantaneous causal relations. Figure 2
provides the computation computation of each constraint-
based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and
more efficient than PCMCI.

4̊tst=0
4tst>0 4̊tst>0

0

0.5

1

·104

Structure

Ti
m

e
(s

)

PCGCE
oCSE
PCMCI

Figure 2: Time computation of constraint based algorithms
on causally sufficient structures. oCSE is not computed on
4tst=0 as it does not consider instantaneous relations.

`POP6 CONCLUSION

We have addressed in this study the problem of inferring
an extended summary causal graph from observational time
series using a constraint-based approach. We argue here that
extended summary graphs are a privileged representation
for causal graphs; they are more robust than window causal
graphs as they do not depend on the sampling rate used to
collect data, and are more complete than summary causal
graphs as they do not conflate past and present instants of
time series. To deal with extended summary graphs, we have
first proposed a greedy causation entropy measure which
generalizes causation entropy to lags greater than one and
to instantaneous relations. This measure, together with stan-
dard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not.
We have then shown how to adapt standard PC-based and
FCI-based algorithms for extended summary graphs in time
series, for (non) causally sufficient structures. Experiments
conducted on different benchmark datasets and involving
previous state-of-the-art proposals showed that the methods
we have introduced provides a good trade-off between effi-
ciency and effectiveness compared to other constraint-based
methods.
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Experiments

Results

No hidden common causeTable 2: Results for simulated data without hidden common causes. The mean and the standard deviation of the F1 score are
reported and the best results are in bold.
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the FMRI benchmark can only be represented by a summary
causal graph, we compare all methods based on the sum-
mary causal graph they infer (this graph is directly deduced
from the window causal graph or the extended summary
causal graph for methods inferring these types of graphs).

Methods: All the methods retained can either infer a win-
dow causal graph, from which one can deduce the corre-
sponding extended summary causal graph, or a summary
causal graph with no instantaneous relations so that the ex-
tended summary causal graph can also be deduced (this is
the case for oCSE and MVGCL presented below).

Among constraint-based methods, in addition to the pro-
posed PCGCE and FCIGCE, we retained the well-known
PCMCI4 [Runge et al., 2019, Runge, 2020] which infers a
window causal graph as well as oCSE [Sun et al., 2015],
relying on our implementation (see the code provided in the
Supplementary Material), which infers a summary causal
graph. For all those methods, the mutual information is esti-
mated using the k-nearest neighbour method with k fixed to
10; a significance local permutation test [Runge, 2018] with
kperm = 5 is furthermore used to assess whether the mutual
information values differ from 0 or not. For non causally
sufficient structures, we retained, in addition to FCIGCE,
the state-of-the-art tsFCI5 method [Entner and Hoyer, 2010]
on which we use tests of zero correlation or zero partial
correlation. The significance level of the test used is set to
0.05 for methods on causally sufficient structures (PCGCE,
PCMCI, oCSE) and to 0.1 for methods on non causally
sufficient structures (FCIGCE, tsFCI).

Among noise-based approaches, we retained the well-known
VarLiNGAM 6 method [Hyvärinen et al., 2010], in which
the regularization parameter in the adaptive Lasso is se-
lected using the Bayesian Information Criterion (no statis-
tical test is performed as we directly use the value of the
statistics). From the Granger family, we retained the stan-
dard lasso-based multivariate Granger (GCMVL) [Arnold
et al., 2007], which we re-implemented, and the recently
proposed TCDF7 [Nauta et al., 2019] with a kernel of size
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5https://sites.google.com/site/

dorisentner/publications/tsfci
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7https://github.com/M-Nauta/TCDF

4, a dilation coefficient set to 4, one hidden layer, a learning
rate of 0.01, and 5000 epochs. Lastly, we retained, from
score-based approaches, the recently proposed Dynotears8

method [Pamfil et al., 2020], the hyperparameters of which
are set to their recommended values (�W = �A = 0.05 and
↵W = ↵A = 0.01).

For all the methods, we use � = 5. A Python routine to
use all the above methods is available in the Supplementary
Materials .

Evaluation Measures: To assess the quality of causal in-
ference, we use two different measures:

• Fp 6=q: the F1-score regarding causal relations between
two different time series;

• Fp=q : the F1-score regarding causal relations between
a time series and itself.

Results: Table 2 summarizes the results of the different
methods on causally sufficient simulated data. Overall, re-
garding causal relations between different time series (which
are not linear due to the generation process retained), for all
tested structures, PCGCE comes out on top. In particular,
PCGCE has the highest Fp 6=q in the structures 4̊tst=0 and
4tst>0, followed by PCMCI. In the structure 4̊tst>0 both
methods PCGCE and PCMCI obtain the same Fp 6=q . oCSE
is not evaluated on the structure 4tst=0 since it cannot deal
with instantaneous relations. However, for other structures,
oCSE yields a low Fp 6=q compared to other constraint-based
methods (PCGCE and PCMCI), especially for the structure
4tst>0. For non constraint-based methods, MVGCL (which,
as oCSE, cannot be evaluated on 4tst=0) comes out best. On
the other hand, Dynotears, VarLiNGAM and TCDF have
poor performance. The results obtained with Dynotears, Var-
LiNGAM and MVGCL are expected as these methods are
designed for linear relations (i.e., in our case, self causes); in
addition, VarLiNGAM is not capable of handling Gaussian
noise. Regarding Fp=q, VarLiNGAM performs best for all
structures followed by PCMCI and then by PCGCE. The
difference in the results of VarLiNGAM in Fp 6=q and Fp=q

is simply due to the fact that we considered non linear rela-
tions between two different time series but linear relations
when the causal relations are within the same time series.

8https://github.com/quantumblacklabs/
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bold.
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Table 3 summarizes the results obtained on the FMRI dataset
using Fp 6=q as the reference summary causal graph on this
dataset does not contain self causes. As for simulated data,
among constraint-based methods, PCGCE performs best
with a Fp 6=q significantly higher than the performance of
PCMCI and oCSE. However, overall, for this dataset, non
constraint-based methods, except TCDF, obtain better re-
sults. This suggests that the faithfulness assumption on
which constraint-based methods rely, is not satisfied on
this dataset.

Table 4: Results for simulated data with hidden common
causes. The mean and the standard deviation of the F1 score
are reported and the best results are in bold.

Perf. FCIGCE tsFCI TCDF
7t2ht>0 Fp 6=q 0.57 ± 0.1 0.52 ± 0.1 0.02 ± 0.1

˚7t2ht>0
Fp 6=q 0.33 ± 0.1 0.36 ± 0.1 0.07 ± 0.1
Fp=q 0.83 ± 0.1 0.99 ± 0.1 0.19 ± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two
non causally sufficient structures described above in Table 4.
For the first structure FCIGCE and tsFCI have the highest
performance, FCIGCE being above tsFCI. For the second
structure, tsFCI has the highest performance on both Fp 6=q

and Fp=q , followed by FCIGCE. TCDF performs poorly on
both structures. We conjecture here that FCIGCE suffers
from the use of a complete window when computing GCE,
which can lead to less stable experimental results when the
dataset is complex.

Time complexity: PC-based causal discovery algorithms
(with instantaneous causal relations) have the following
complexity, in terms of the number of independence tests
[Spirtes et al., 2000], on window causal graphs: (d(� +
1))2(d(� + 1)� 1)k�1/(2(k� 1)!), where d represents the
number of time series considered. Algorithms adapted to
time series, as PCMCI Runge [2020], rely on the assumption
of temporal priority and consistency throughout time to
reduce the number of tests. Our proposed method benefits
from a smaller number of tests compared to PC and PCMCI
if �max > 1. In the worst case, its complexity is: 4d2(2d�
1)k�1/(k � 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE
does not consider instantaneous causal relations. Figure 2
provides the computation computation of each constraint-
based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and
more efficient than PCMCI.
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Figure 2: Time computation of constraint based algorithms
on causally sufficient structures. oCSE is not computed on
4tst=0 as it does not consider instantaneous relations.

`POP6 CONCLUSION

We have addressed in this study the problem of inferring
an extended summary causal graph from observational time
series using a constraint-based approach. We argue here that
extended summary graphs are a privileged representation
for causal graphs; they are more robust than window causal
graphs as they do not depend on the sampling rate used to
collect data, and are more complete than summary causal
graphs as they do not conflate past and present instants of
time series. To deal with extended summary graphs, we have
first proposed a greedy causation entropy measure which
generalizes causation entropy to lags greater than one and
to instantaneous relations. This measure, together with stan-
dard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not.
We have then shown how to adapt standard PC-based and
FCI-based algorithms for extended summary graphs in time
series, for (non) causally sufficient structures. Experiments
conducted on different benchmark datasets and involving
previous state-of-the-art proposals showed that the methods
we have introduced provides a good trade-off between effi-
ciency and effectiveness compared to other constraint-based
methods.
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Table 3: Results for real data. The mean and the standard deviation of the F1 score are reported and the best results are in
bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL
FMRI Fp 6=q 0.31 ± 0.2 0.16 ± 0.19 0.22 ± 0.18 0.49 ± 0.28 0.34 ± 0.13 0.06 ± 0.12 0.35 ± 0.08

Table 3 summarizes the results obtained on the FMRI dataset
using Fp 6=q as the reference summary causal graph on this
dataset does not contain self causes. As for simulated data,
among constraint-based methods, PCGCE performs best
with a Fp 6=q significantly higher than the performance of
PCMCI and oCSE. However, overall, for this dataset, non
constraint-based methods, except TCDF, obtain better re-
sults. This suggests that the faithfulness assumption on
which constraint-based methods rely, is not satisfied on
this dataset.

Table 4: Results for simulated data with hidden common
causes. The mean and the standard deviation of the F1 score
are reported and the best results are in bold.

Perf. FCIGCE tsFCI TCDF
7t2ht>0 Fp 6=q 0.57 ± 0.1 0.52 ± 0.1 0.02 ± 0.1

˚7t2ht>0
Fp 6=q 0.33 ± 0.1 0.36 ± 0.1 0.07 ± 0.1
Fp=q 0.83 ± 0.1 0.99 ± 0.1 0.19 ± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two
non causally sufficient structures described above in Table 4.
For the first structure FCIGCE and tsFCI have the highest
performance, FCIGCE being above tsFCI. For the second
structure, tsFCI has the highest performance on both Fp 6=q

and Fp=q , followed by FCIGCE. TCDF performs poorly on
both structures. We conjecture here that FCIGCE suffers
from the use of a complete window when computing GCE,
which can lead to less stable experimental results when the
dataset is complex.

Time complexity: PC-based causal discovery algorithms
(with instantaneous causal relations) have the following
complexity, in terms of the number of independence tests
[Spirtes et al., 2000], on window causal graphs: (d(� +
1))2(d(� + 1)� 1)k�1/(2(k� 1)!), where d represents the
number of time series considered. Algorithms adapted to
time series, as PCMCI Runge [2020], rely on the assumption
of temporal priority and consistency throughout time to
reduce the number of tests. Our proposed method benefits
from a smaller number of tests compared to PC and PCMCI
if �max > 1. In the worst case, its complexity is: 4d2(2d�
1)k�1/(k � 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE
does not consider instantaneous causal relations. Figure 2
provides the computation computation of each constraint-
based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and
more efficient than PCMCI.
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`POP6 CONCLUSION

We have addressed in this study the problem of inferring
an extended summary causal graph from observational time
series using a constraint-based approach. We argue here that
extended summary graphs are a privileged representation
for causal graphs; they are more robust than window causal
graphs as they do not depend on the sampling rate used to
collect data, and are more complete than summary causal
graphs as they do not conflate past and present instants of
time series. To deal with extended summary graphs, we have
first proposed a greedy causation entropy measure which
generalizes causation entropy to lags greater than one and
to instantaneous relations. This measure, together with stan-
dard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not.
We have then shown how to adapt standard PC-based and
FCI-based algorithms for extended summary graphs in time
series, for (non) causally sufficient structures. Experiments
conducted on different benchmark datasets and involving
previous state-of-the-art proposals showed that the methods
we have introduced provides a good trade-off between effi-
ciency and effectiveness compared to other constraint-based
methods.
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Experiments

Results

No hidden common causeTable 2: Results for simulated data without hidden common causes. The mean and the standard deviation of the F1 score are
reported and the best results are in bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL

4̊tst=0
Fp 6=q 0.62 ± 0.17 � 0.60 ± 0.12 0.32 ± 0.13 0.04 ± 0.12 0.00 ± 0.00 �
Fp=q 0.81 ± 0.12 � 0.87 ± 0.12 0.92 ± 0.07 0.37 ± 0.21 0.18 ± 0.24 �

4tst>0 Fp 6=q 0.71 ± 0.13 0.31 ± 0.21 0.67 ± 0.16 0.00 ± 0.00 0.16 ± 0.19 0.00 ± 0.00 0.52 ± 0.11

4̊tst>0
Fp 6=q 0.81 ± 0.18 0.78 ± 0.17 0.81 ± 0.12 0.00 ± 0.00 0.16 ± 0.19 0.04 ± 0.12 0.53 ± 0.09
Fp=q 0.94 ± 0.06 0.82 ± 0.11 0.97 ± 0.05 0.98 ± 0.04 0.47 ± 0.15 0.35 ± 0.27 �

the FMRI benchmark can only be represented by a summary
causal graph, we compare all methods based on the sum-
mary causal graph they infer (this graph is directly deduced
from the window causal graph or the extended summary
causal graph for methods inferring these types of graphs).

Methods: All the methods retained can either infer a win-
dow causal graph, from which one can deduce the corre-
sponding extended summary causal graph, or a summary
causal graph with no instantaneous relations so that the ex-
tended summary causal graph can also be deduced (this is
the case for oCSE and MVGCL presented below).

Among constraint-based methods, in addition to the pro-
posed PCGCE and FCIGCE, we retained the well-known
PCMCI4 [Runge et al., 2019, Runge, 2020] which infers a
window causal graph as well as oCSE [Sun et al., 2015],
relying on our implementation (see the code provided in the
Supplementary Material), which infers a summary causal
graph. For all those methods, the mutual information is esti-
mated using the k-nearest neighbour method with k fixed to
10; a significance local permutation test [Runge, 2018] with
kperm = 5 is furthermore used to assess whether the mutual
information values differ from 0 or not. For non causally
sufficient structures, we retained, in addition to FCIGCE,
the state-of-the-art tsFCI5 method [Entner and Hoyer, 2010]
on which we use tests of zero correlation or zero partial
correlation. The significance level of the test used is set to
0.05 for methods on causally sufficient structures (PCGCE,
PCMCI, oCSE) and to 0.1 for methods on non causally
sufficient structures (FCIGCE, tsFCI).

Among noise-based approaches, we retained the well-known
VarLiNGAM 6 method [Hyvärinen et al., 2010], in which
the regularization parameter in the adaptive Lasso is se-
lected using the Bayesian Information Criterion (no statis-
tical test is performed as we directly use the value of the
statistics). From the Granger family, we retained the stan-
dard lasso-based multivariate Granger (GCMVL) [Arnold
et al., 2007], which we re-implemented, and the recently
proposed TCDF7 [Nauta et al., 2019] with a kernel of size

4https://github.com/jakobrunge/tigramite
5https://sites.google.com/site/

dorisentner/publications/tsfci
6https://github.com/cdt15/lingam
7https://github.com/M-Nauta/TCDF

4, a dilation coefficient set to 4, one hidden layer, a learning
rate of 0.01, and 5000 epochs. Lastly, we retained, from
score-based approaches, the recently proposed Dynotears8

method [Pamfil et al., 2020], the hyperparameters of which
are set to their recommended values (�W = �A = 0.05 and
↵W = ↵A = 0.01).

For all the methods, we use � = 5. A Python routine to
use all the above methods is available in the Supplementary
Materials .

Evaluation Measures: To assess the quality of causal in-
ference, we use two different measures:

• Fp 6=q: the F1-score regarding causal relations between
two different time series;

• Fp=q : the F1-score regarding causal relations between
a time series and itself.

Results: Table 2 summarizes the results of the different
methods on causally sufficient simulated data. Overall, re-
garding causal relations between different time series (which
are not linear due to the generation process retained), for all
tested structures, PCGCE comes out on top. In particular,
PCGCE has the highest Fp 6=q in the structures 4̊tst=0 and
4tst>0, followed by PCMCI. In the structure 4̊tst>0 both
methods PCGCE and PCMCI obtain the same Fp 6=q . oCSE
is not evaluated on the structure 4tst=0 since it cannot deal
with instantaneous relations. However, for other structures,
oCSE yields a low Fp 6=q compared to other constraint-based
methods (PCGCE and PCMCI), especially for the structure
4tst>0. For non constraint-based methods, MVGCL (which,
as oCSE, cannot be evaluated on 4tst=0) comes out best. On
the other hand, Dynotears, VarLiNGAM and TCDF have
poor performance. The results obtained with Dynotears, Var-
LiNGAM and MVGCL are expected as these methods are
designed for linear relations (i.e., in our case, self causes); in
addition, VarLiNGAM is not capable of handling Gaussian
noise. Regarding Fp=q, VarLiNGAM performs best for all
structures followed by PCMCI and then by PCGCE. The
difference in the results of VarLiNGAM in Fp 6=q and Fp=q

is simply due to the fact that we considered non linear rela-
tions between two different time series but linear relations
when the causal relations are within the same time series.

8https://github.com/quantumblacklabs/
causalnex

No hidden common cause (FMRI)Table 3: Results for real data. The mean and the standard deviation of the F1 score are reported and the best results are in
bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL
FMRI Fp 6=q 0.31 ± 0.2 0.16 ± 0.19 0.22 ± 0.18 0.49 ± 0.28 0.34 ± 0.13 0.06 ± 0.12 0.35 ± 0.08

Table 3 summarizes the results obtained on the FMRI dataset
using Fp 6=q as the reference summary causal graph on this
dataset does not contain self causes. As for simulated data,
among constraint-based methods, PCGCE performs best
with a Fp 6=q significantly higher than the performance of
PCMCI and oCSE. However, overall, for this dataset, non
constraint-based methods, except TCDF, obtain better re-
sults. This suggests that the faithfulness assumption on
which constraint-based methods rely, is not satisfied on
this dataset.

Table 4: Results for simulated data with hidden common
causes. The mean and the standard deviation of the F1 score
are reported and the best results are in bold.

Perf. FCIGCE tsFCI TCDF
7t2ht>0 Fp 6=q 0.57 ± 0.1 0.52 ± 0.1 0.02 ± 0.1

˚7t2ht>0
Fp 6=q 0.33 ± 0.1 0.36 ± 0.1 0.07 ± 0.1
Fp=q 0.83 ± 0.1 0.99 ± 0.1 0.19 ± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two
non causally sufficient structures described above in Table 4.
For the first structure FCIGCE and tsFCI have the highest
performance, FCIGCE being above tsFCI. For the second
structure, tsFCI has the highest performance on both Fp 6=q

and Fp=q , followed by FCIGCE. TCDF performs poorly on
both structures. We conjecture here that FCIGCE suffers
from the use of a complete window when computing GCE,
which can lead to less stable experimental results when the
dataset is complex.

Time complexity: PC-based causal discovery algorithms
(with instantaneous causal relations) have the following
complexity, in terms of the number of independence tests
[Spirtes et al., 2000], on window causal graphs: (d(� +
1))2(d(� + 1)� 1)k�1/(2(k� 1)!), where d represents the
number of time series considered. Algorithms adapted to
time series, as PCMCI Runge [2020], rely on the assumption
of temporal priority and consistency throughout time to
reduce the number of tests. Our proposed method benefits
from a smaller number of tests compared to PC and PCMCI
if �max > 1. In the worst case, its complexity is: 4d2(2d�
1)k�1/(k � 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE
does not consider instantaneous causal relations. Figure 2
provides the computation computation of each constraint-
based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and
more efficient than PCMCI.
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Figure 2: Time computation of constraint based algorithms
on causally sufficient structures. oCSE is not computed on
4tst=0 as it does not consider instantaneous relations.

`POP6 CONCLUSION

We have addressed in this study the problem of inferring
an extended summary causal graph from observational time
series using a constraint-based approach. We argue here that
extended summary graphs are a privileged representation
for causal graphs; they are more robust than window causal
graphs as they do not depend on the sampling rate used to
collect data, and are more complete than summary causal
graphs as they do not conflate past and present instants of
time series. To deal with extended summary graphs, we have
first proposed a greedy causation entropy measure which
generalizes causation entropy to lags greater than one and
to instantaneous relations. This measure, together with stan-
dard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not.
We have then shown how to adapt standard PC-based and
FCI-based algorithms for extended summary graphs in time
series, for (non) causally sufficient structures. Experiments
conducted on different benchmark datasets and involving
previous state-of-the-art proposals showed that the methods
we have introduced provides a good trade-off between effi-
ciency and effectiveness compared to other constraint-based
methods.
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Table 3: Results for real data. The mean and the standard deviation of the F1 score are reported and the best results are in
bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL
FMRI Fp 6=q 0.31 ± 0.2 0.16 ± 0.19 0.22 ± 0.18 0.49 ± 0.28 0.34 ± 0.13 0.06 ± 0.12 0.35 ± 0.08

Table 3 summarizes the results obtained on the FMRI dataset
using Fp 6=q as the reference summary causal graph on this
dataset does not contain self causes. As for simulated data,
among constraint-based methods, PCGCE performs best
with a Fp 6=q significantly higher than the performance of
PCMCI and oCSE. However, overall, for this dataset, non
constraint-based methods, except TCDF, obtain better re-
sults. This suggests that the faithfulness assumption on
which constraint-based methods rely, is not satisfied on
this dataset.

Table 4: Results for simulated data with hidden common
causes. The mean and the standard deviation of the F1 score
are reported and the best results are in bold.

Perf. FCIGCE tsFCI TCDF
7t2ht>0 Fp 6=q 0.57 ± 0.1 0.52 ± 0.1 0.02 ± 0.1

˚7t2ht>0
Fp 6=q 0.33 ± 0.1 0.36 ± 0.1 0.07 ± 0.1
Fp=q 0.83 ± 0.1 0.99 ± 0.1 0.19 ± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two
non causally sufficient structures described above in Table 4.
For the first structure FCIGCE and tsFCI have the highest
performance, FCIGCE being above tsFCI. For the second
structure, tsFCI has the highest performance on both Fp 6=q

and Fp=q , followed by FCIGCE. TCDF performs poorly on
both structures. We conjecture here that FCIGCE suffers
from the use of a complete window when computing GCE,
which can lead to less stable experimental results when the
dataset is complex.

Time complexity: PC-based causal discovery algorithms
(with instantaneous causal relations) have the following
complexity, in terms of the number of independence tests
[Spirtes et al., 2000], on window causal graphs: (d(� +
1))2(d(� + 1)� 1)k�1/(2(k� 1)!), where d represents the
number of time series considered. Algorithms adapted to
time series, as PCMCI Runge [2020], rely on the assumption
of temporal priority and consistency throughout time to
reduce the number of tests. Our proposed method benefits
from a smaller number of tests compared to PC and PCMCI
if �max > 1. In the worst case, its complexity is: 4d2(2d�
1)k�1/(k � 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE
does not consider instantaneous causal relations. Figure 2
provides the computation computation of each constraint-
based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and
more efficient than PCMCI.
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Figure 2: Time computation of constraint based algorithms
on causally sufficient structures. oCSE is not computed on
4tst=0 as it does not consider instantaneous relations.

`POP6 CONCLUSION

We have addressed in this study the problem of inferring
an extended summary causal graph from observational time
series using a constraint-based approach. We argue here that
extended summary graphs are a privileged representation
for causal graphs; they are more robust than window causal
graphs as they do not depend on the sampling rate used to
collect data, and are more complete than summary causal
graphs as they do not conflate past and present instants of
time series. To deal with extended summary graphs, we have
first proposed a greedy causation entropy measure which
generalizes causation entropy to lags greater than one and
to instantaneous relations. This measure, together with stan-
dard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not.
We have then shown how to adapt standard PC-based and
FCI-based algorithms for extended summary graphs in time
series, for (non) causally sufficient structures. Experiments
conducted on different benchmark datasets and involving
previous state-of-the-art proposals showed that the methods
we have introduced provides a good trade-off between effi-
ciency and effectiveness compared to other constraint-based
methods.
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Experiments

First conclusions

1 Relatively simple extensions of PC and FCI to extended summary graphs
(Assaad-2022(b))

2 Method sound and complete with robust behaviour on various datasets
3 Assumptions: temporal priority, consistency through time, acyclicity,

faithfulness
4 Remark: possibility to mix approaches, e.g. noise-based and

constraint-based (Assaad-2021)

Time complexity

Table 3: Results for real data. The mean and the standard deviation of the F1 score are reported and the best results are in
bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL
FMRI Fp 6=q 0.31 ± 0.2 0.16 ± 0.19 0.22 ± 0.18 0.49 ± 0.28 0.34 ± 0.13 0.06 ± 0.12 0.35 ± 0.08

Table 3 summarizes the results obtained on the FMRI dataset
using Fp 6=q as the reference summary causal graph on this
dataset does not contain self causes. As for simulated data,
among constraint-based methods, PCGCE performs best
with a Fp 6=q significantly higher than the performance of
PCMCI and oCSE. However, overall, for this dataset, non
constraint-based methods, except TCDF, obtain better re-
sults. This suggests that the faithfulness assumption on
which constraint-based methods rely, is not satisfied on
this dataset.

Table 4: Results for simulated data with hidden common
causes. The mean and the standard deviation of the F1 score
are reported and the best results are in bold.

Perf. FCIGCE tsFCI TCDF
7t2ht>0 Fp 6=q 0.57 ± 0.1 0.52 ± 0.1 0.02 ± 0.1

˚7t2ht>0
Fp 6=q 0.33 ± 0.1 0.36 ± 0.1 0.07 ± 0.1
Fp=q 0.83 ± 0.1 0.99 ± 0.1 0.19 ± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two
non causally sufficient structures described above in Table 4.
For the first structure FCIGCE and tsFCI have the highest
performance, FCIGCE being above tsFCI. For the second
structure, tsFCI has the highest performance on both Fp 6=q

and Fp=q , followed by FCIGCE. TCDF performs poorly on
both structures. We conjecture here that FCIGCE suffers
from the use of a complete window when computing GCE,
which can lead to less stable experimental results when the
dataset is complex.

Time complexity: PC-based causal discovery algorithms
(with instantaneous causal relations) have the following
complexity, in terms of the number of independence tests
[Spirtes et al., 2000], on window causal graphs: (d(� +
1))2(d(� + 1)� 1)k�1/(2(k� 1)!), where d represents the
number of time series considered. Algorithms adapted to
time series, as PCMCI Runge [2020], rely on the assumption
of temporal priority and consistency throughout time to
reduce the number of tests. Our proposed method benefits
from a smaller number of tests compared to PC and PCMCI
if �max > 1. In the worst case, its complexity is: 4d2(2d�
1)k�1/(k � 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE
does not consider instantaneous causal relations. Figure 2
provides the computation computation of each constraint-
based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and
more efficient than PCMCI.
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Figure 2: Time computation of constraint based algorithms
on causally sufficient structures. oCSE is not computed on
4tst=0 as it does not consider instantaneous relations.

`POP6 CONCLUSION

We have addressed in this study the problem of inferring
an extended summary causal graph from observational time
series using a constraint-based approach. We argue here that
extended summary graphs are a privileged representation
for causal graphs; they are more robust than window causal
graphs as they do not depend on the sampling rate used to
collect data, and are more complete than summary causal
graphs as they do not conflate past and present instants of
time series. To deal with extended summary graphs, we have
first proposed a greedy causation entropy measure which
generalizes causation entropy to lags greater than one and
to instantaneous relations. This measure, together with stan-
dard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not.
We have then shown how to adapt standard PC-based and
FCI-based algorithms for extended summary graphs in time
series, for (non) causally sufficient structures. Experiments
conducted on different benchmark datasets and involving
previous state-of-the-art proposals showed that the methods
we have introduced provides a good trade-off between effi-
ciency and effectiveness compared to other constraint-based
methods.
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Experiments

First conclusions

1 Relatively simple extensions of PC and FCI to extended summary graphs
(Assaad-2022(b))

2 Method sound and complete with robust behaviour on various datasets
3 Assumptions: temporal priority, consistency through time, acyclicity,

faithfulness
4 Remark: possibility to mix approaches, e.g. noise-based and

constraint-based (Assaad-2021)

Time complexity

Table 3: Results for real data. The mean and the standard deviation of the F1 score are reported and the best results are in
bold.

Perf. PCGCE oCSE PCMCI VarLiNGAM Dynotears TCDF MVGCL
FMRI Fp 6=q 0.31 ± 0.2 0.16 ± 0.19 0.22 ± 0.18 0.49 ± 0.28 0.34 ± 0.13 0.06 ± 0.12 0.35 ± 0.08

Table 3 summarizes the results obtained on the FMRI dataset
using Fp 6=q as the reference summary causal graph on this
dataset does not contain self causes. As for simulated data,
among constraint-based methods, PCGCE performs best
with a Fp 6=q significantly higher than the performance of
PCMCI and oCSE. However, overall, for this dataset, non
constraint-based methods, except TCDF, obtain better re-
sults. This suggests that the faithfulness assumption on
which constraint-based methods rely, is not satisfied on
this dataset.

Table 4: Results for simulated data with hidden common
causes. The mean and the standard deviation of the F1 score
are reported and the best results are in bold.

Perf. FCIGCE tsFCI TCDF
7t2ht>0 Fp 6=q 0.57 ± 0.1 0.52 ± 0.1 0.02 ± 0.1

˚7t2ht>0
Fp 6=q 0.33 ± 0.1 0.36 ± 0.1 0.07 ± 0.1
Fp=q 0.83 ± 0.1 0.99 ± 0.1 0.19 ± 0.2

Lastly, we compare FCIGCE, tsFCI and TCDF on the two
non causally sufficient structures described above in Table 4.
For the first structure FCIGCE and tsFCI have the highest
performance, FCIGCE being above tsFCI. For the second
structure, tsFCI has the highest performance on both Fp 6=q

and Fp=q , followed by FCIGCE. TCDF performs poorly on
both structures. We conjecture here that FCIGCE suffers
from the use of a complete window when computing GCE,
which can lead to less stable experimental results when the
dataset is complex.

Time complexity: PC-based causal discovery algorithms
(with instantaneous causal relations) have the following
complexity, in terms of the number of independence tests
[Spirtes et al., 2000], on window causal graphs: (d(� +
1))2(d(� + 1)� 1)k�1/(2(k� 1)!), where d represents the
number of time series considered. Algorithms adapted to
time series, as PCMCI Runge [2020], rely on the assumption
of temporal priority and consistency throughout time to
reduce the number of tests. Our proposed method benefits
from a smaller number of tests compared to PC and PCMCI
if �max > 1. In the worst case, its complexity is: 4d2(2d�
1)k�1/(k � 1)!. However, our method needs to perform
additional independence tests compared to oCSE as oCSE
does not consider instantaneous causal relations. Figure 2
provides the computation computation of each constraint-
based method on the causally sufficient structures. As one
can note, PCGCE is slightly less efficient than oCSE and
more efficient than PCMCI.

4̊tst=0
4tst>0 4̊tst>0

0

0.5

1

·104

Structure

Tim
e(s

)

PCGCE
oCSE
PCMCI

Figure 2: Time computation of constraint based algorithms
on causally sufficient structures. oCSE is not computed on
4tst=0 as it does not consider instantaneous relations.

`POP6 CONCLUSION

We have addressed in this study the problem of inferring
an extended summary causal graph from observational time
series using a constraint-based approach. We argue here that
extended summary graphs are a privileged representation
for causal graphs; they are more robust than window causal
graphs as they do not depend on the sampling rate used to
collect data, and are more complete than summary causal
graphs as they do not conflate past and present instants of
time series. To deal with extended summary graphs, we have
first proposed a greedy causation entropy measure which
generalizes causation entropy to lags greater than one and
to instantaneous relations. This measure, together with stan-
dard mutual information for instantaneous relations, is used
to assess whether two time series are causally related or not.
We have then shown how to adapt standard PC-based and
FCI-based algorithms for extended summary graphs in time
series, for (non) causally sufficient structures. Experiments
conducted on different benchmark datasets and involving
previous state-of-the-art proposals showed that the methods
we have introduced provides a good trade-off between effi-
ciency and effectiveness compared to other constraint-based
methods.
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Experiments

What about summary graphs?

The situation in summary graphs is slightly more difficult as there is no
distinction between past and present so that windows need be considered on
each time series. One can nevertheless define a mutual infomation measure
based on these windows and follow an appraoch similar to the one above with
additional rules for instantaneous relations (Assaad-2022(c)).
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Identifiability in (extended) summary causal graphs

Background
General form of an intervention P(Rt = rt |do(Iti = iti )) where Iti is the
intervention set, Rt the response set and do() the standard intervention
operator (Pearl-2009)
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Identifiability in (extended) summary causal graphs

Problem statement
Identifiability If it exists, provide an equivalent do-free formula, or estimand, for
an intervention which can be estimated from observational data - using
observational data to compute a causal effect

Example In the above window causal graph,
P(x1

t |do(x3
t−1)) =

∑
x3

t−2
P(x3

t−2)P(x1
t |x3

t−1, x
3
t−2) as X 3

t−2 satisfies the
back-door criterion
Note that the estimand depends ont the underlying causal graph. Identifiability
problem solved in window causal graphs (Blondel-2016). What about
(extended) summary causal graphs?
The difficulty lies in the fact that the (extended) summary graph is not
complete (does not contain all causal relations)

→ Anouar’s pres. tomorrow
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Identifiability in (extended) summary causal graphs

Equivalence relation

From (extended) summary causal graphs to window causal graphs

A simple approach to identifiability is to enumerate all window causal graphs
compatible with a given (extended) summary causal graph and use a version
of the ID algorithm (Shpitser-2006). However not possible in practice when
the number of time series considered is large

Equivalent window causal graph Let Gs be a (extended) summary causal
graph. Consider an intervention set Iti and a response set Rt. Two window
causal graphs Gw1 and Gw2 are equivalent for the intervention P(rt|do(iti )) if
and only if the intervention is non-identifiable in both graphs, and there is no
estimand, or identifiable in both with the same estimand
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Identifiability in (extended) summary causal graphs

Possible approach

1 Identify relevant interventional parents blocking all backdoor paths for a
given intervention

2 Compute do-free formula from relevant interventional parents

Preliminary experimental results encouraging with possibility to use maximal
equivalence class in all cases for extended summary graphs
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Identifiability in (extended) summary causal graphs

Assumptions & data types

Assumptions made
1 Temporal priority, acyclicity, faithfulness
2 Causal stationarity, (local) statistical stationarity

Data types From purely continuous to mixed (quantitative and qualitative) data
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Mixed data

Dealing with mixed data

Once one has a way to estimate the (conditional) mutual information between
mixed data samples, then one directly apply the above approach to infer
causal graphs from observational data

Different approaches have been proposed in the literature to estimate the
(conditional) entropy of a set of variables, the two prominent ones being
based on histograms, particularly adapted to qualitative data, and the k-NN
approach, mostly used on quantitative data (Zan-2022)

We propose here an hybrid approach combining both histograms and k-NNs
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Mixed data

Decomposing mutual information

Let us consider three mixed random vectors X , Y and Z , where any of their
components can be either qualitative or quantitative. Let us denote by X t

(respectively Y t , Z t ) the sub-vector of X (respectively Y , Z ) composed by the
quantitative components. Similarly, we denote by X ` (respectively Y `, Z `) the
sub-vector of qualitative components of X (respectively Y , Z ). Then one has:

I(X ; Y |Z ) = H(X ,Z ) + H(Y ,Z )− H(X ,Y ,Z )− H(Z )

= H(X t ,X `,Z t ,Z `) + H(Y t ,Y `,Z t ,Z `)

− H(X t ,X `,Y t ,Y `,Z t ,Z `)− H(Z t ,Z `)

= H(X t ,Z t |X `,Z `) + H(Y t ,Z t |Y `,Z `)− H(X t ,Y t ,Z t |X `,Y `,Z `)

− H(Z t |Z `) + H(X `,Z `) + H(Y `,Z `)− H(X `,Y `,Z `)− H(Z `)

E. Gaussier Causal and Inference in Time Series 17 April 2023 41 / 51



Mixed data

Estimating H(., .) and H(.|.)

H(., .) is estimated with histograms

H(.t |.`) is estimated with k-NNs

Theorem

Let (X ,Y ,Z ) be a qualitative-quantitative mixed random vector. The obtained
estimator Î(X ; Y |Z ) is consistent, meaning that, for all ε > 0

lim
n→∞

P(|̂I(X ; Y |Z )− I(X ; Y |Z )| > ε) = 0

In addition, Î(X ; Y |Z ) is asymptotically unbiased, that is

lim
n→∞

E[̂I(X ; Y |Z )− I(X ; Y |Z )] = 0
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Mixed data

Illustration (1)
Comparison for I(X ; Y ) and I(X ; Y |Z ) (Z quantitative) with one state-of-the-art
histogram-based, namely LH (Marx-2021), and three state-of-the-art methods
based on k-NN, namely FP (Frenzel-2007), MS (Mesner-2020), RAVK
(Rahimzamani-2018) on synthetic datasets revealed that (Zan-2022):

FP performs well in the purely quantitative case with no conditioning but
is not competitive in the mixed data case
MS and RAVK are close to each other and have similar performance.
Main drawback is that MS gives the value 0, or close to 0, to the estimator
in some particular cases (as when the k-NN is always determined by Z )
CMIh and LH behave well overall but LH is so slow that it can not be used
when the dimension of Z exceeds 2
The good behaviour of CMIh is further confirmed when used in
conjunction with a local a permutation test (Zan-2022)

→ Discussion with Lei
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Mixed data

Illustration (2)
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Figure: Synthetic data with known ground truth. MSE (on a log-scale) of each method
with respect to the sample size (in abscissa)
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Conclusion

Conclusion

Exploring the use of (extended) summary graphs ...
1 Operational advantages: easier to infer, validate and come up with
2 Inferring such graphs from observational data

Independence estimation is a practical bottleneck (precise and fast)
3 Solving the identifiability problem in such graphs (on-going work)

for mixed time series

A few challenges
Non stationarity
Cyclic causal graphs (instantaneous relations)
Efficient and effective methods with (some) theoretical guarantees with
hidden confounders
...

Survey and Evaluation of Causal Discovery Methods for Time Series
(Assaad-2022(a); JAIR, IJCAI)
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