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Information Dependency Models and Information Fields

• Information dependency models: causality with information

fields

• Information fields: Witsenhausen’s 1971 paper 1

• Witsenhausen’s motivation: control of multi-agent systems

• but in fact, it is a very generic tool

• Used to revisit the foundations of game theory2

• Theoretical toolbox for causality: the Information Dependency

Model (IDM)

1On information structures, feedback and causality.
2Kuhn’s equivalence theorem for games in product form
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Making the case for Information Dependency Model (IDM)

• Unlock mathematical toolboxes

• Unifying and generalizing framework for causality3

• Elegant style of expression and proof : equational reasoning

• Potential to bridge causality, game theory, control and

Reinforcement Learning

3can deal with spurious edges, cycles
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What is the common denominator to those areas?

In some sense:

”To depend on” = ”observing” = ”knowing” = ”playing after”
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The three main ideas

• IDM, as a generalization of causal graphs/an alternative language

to describe causal dependencies

• Binary relations, as a way to encode causal influence

• Topological separation, as an alternative definition of d-separation
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”Alice, Bob and a coin tossing” configuration space

Example

• two states of Nature Ω = {ω+, ω−} (heads/tails)

• two agents a and b

• two possible actions each: Ua = {Ta,Ba}, Ub = {Rb, Lb}
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”Alice, Bob and a coin tossing” configuration space

Example

• two states of Nature Ω = {ω+, ω−} (heads/tails)

• two agents a and b

• two possible actions each: Ua = {Ta,Ba}, Ub = {Rb, Lb}
• product configuration space (8 elements)

H = {ω+, ω−} × {Ta,Ba} × {Rb, Lb}

(ω−,Ba,Lb) (ω−,Ta,Lb)

(ω+,Ta,Lb)(ω+,Ba,Lb)

(ω−,Ba,Rb) (ω−,Ta,Rb)

(ω+,Ba,Rb) (ω+,Ta,Rb)

•

••

•

• •

• •
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”Alice, Bob and a coin tossing” information partitions

(ω−,Ba,Lb) (ω−,Ta,Lb)

(ω+,Ta,Lb)(ω+,Ba,Lb)

(ω−,Ba,Rb) (ω−,Ta,Rb)

(ω+,Ba,Rb) (ω+,Ta,Rb)
Ia

•

••

•

• •

• •

(ω−,Ba,Lb) (ω−,Ta,Lb)

(ω+,Ta,Lb)(ω+,Ba,Lb)

(ω−,Ba,Rb) (ω−,Ta,Rb)

(ω+,Ba,Rb) (ω+,Ta,Rb)
Ib

•

••

•

• •

• •

Ib =

Bob knows Nature’s move︷ ︸︸ ︷
{∅, {ω+}, {ω−}, {ω+, ω−}}⊗

Bob does not know what Alice does︷ ︸︸ ︷
{∅, {Ta,Ba}} ⊗{∅,Ub}

Ia = {∅, {ω+}, {ω−}, {ω+, ω−}}︸ ︷︷ ︸
Alice knows Nature’s move

⊗{∅,Ua} ⊗ {∅, {Rb}, {Lb}, {Rb, Lb}}︸ ︷︷ ︸
Alice knows what Bob does
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Witsenhausen’s philosophy

• H is the domain of every function

• for any variable a encode the ”dependence” by asking for

measurability w.r.t. information field4 Ia, that is,

λa : (H,H) → (Ua,Ua)

λ−1
a (Ua) ⊂ Ia

4

• A σ-field over a set D is a subset D ⊂ 2D, containing D, and which is

stable under complement and countable union. (The trivial σ-field over

the set D is {∅,D})
• Probability theory defines a random variable as a measurable mapping

from (Ω,F) to (U,U).
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Structural Causal Model (SCM)

Ua(ω) = λa(UP(a)(ω), ωa) ∀ω ∈ Ω ∀a ∈ A

• (λa)a∈A: assignments

• P : A → 2A: parental mapping

In the example:

• λBob = λBob(UCoin, ωBob)

• λAlice = λAlice(UCoin,UBob, ωAlice)
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Information Dependency Model (IDM)

1. The configuration space is the product space

H =
∏
a∈A

Ua × Ω

2. H is the product field of H

3. An Information Dependency Model is a collection (Ia)a∈A of

subfields of H such that, for a ∈ A,

Ia ⊂
⊗
b∈A

Ub ⊗ Fa

The subfield Ia is called the information field of a.

4. SCM now defined by the field inclusion

λ−1
a (Ua) ⊂ Ia ∀a ∈ A
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From SCM to IDM, an illustration

Ua(ω) = λa(UP(a)(ω), ωa) ∀ω ∈ Ω ∀a ∈ A

In the example,

• λBob = λBob(UCoin, ωBob) becomes λ−1
Bob(UBob) ⊂ IBob

• λAlice = λAlice(UCoin,UBob, ωAlice) becomes λ−1
Alice(UAlice) ⊂ IAlice ,

where

IBob =

Bob knows Nature’s move︷ ︸︸ ︷
{∅, {ω+}, {ω−}, {ω+, ω−}}⊗

Bob does not know what Alice does︷ ︸︸ ︷
{∅, {Ta,Ba}} ⊗{∅,Ub}

IAlice = {∅, {ω+}, {ω−}, {ω+, ω−}}︸ ︷︷ ︸
Alice knows Nature’s move

⊗{∅,Ua} ⊗ {∅, {Rb}, {Lb}, {Rb, Lb}}︸ ︷︷ ︸
Alice knows what Bob does
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DAGs v.s. information fields

Pearl Witsenhausen

Structure DAG binary relations5

Dependence SCM information fields

functional relation measurable policy profiles

Resolution induction solution map6

Intervention do operator encoded with information fields

Causal ordering fixed not fixed (might not exist)

Table 1: Correspondences between Pearl’s DAG and Witsenhausen’s intrinsic

model

5minimality for free
6allows for compositional arguments
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Well-posedness

DAG

Causal

Solvable measurable

Solvable

Figure 1: Hierarchy of systems
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(W ,H)-Conditional Precedence

Definition

The conditional predecessor set EW ,Ha is the smallest subset B ⊂ A such

that

Ia ∩ H ⊂ HB∪W ∩ H

(for W ⊂ A, H ⊂ H and a ∈ A).

We denote by B̄ (or B̄W ,H) the topological closure of B, which is the

smallest subset of A that contains B and its own predecessors under

EW ,H .
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Topological separation and Do-calculus

Definition (Topological Separation)

We say that B and C are (conditionally) topologically separated (wrt

(W ,H)), and write

B ∥
t
C | (W ,H),

if there exists WB ,WC ⊂ W such that

WB ⊔WC = W and B ∪WB ∩ C ∪WC = ∅

Theorem (Do-calculus)

Y ∥
t
Z | (W ,H) =⇒ Pr (UY | UW ,UZ̄ ,H) = Pr (UY | UW ,H)
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Topological separation and d-separation are equivalent

Theorem

Let (V, E) be a graph, that is, V is a set and E ⊂ V × V, and let W ⊂ V
be a subset of vertices, we have the equivalence

b ∥
t
c | W ⇐⇒ b ∥

d
c | W

(
∀b, c ∈ W c

)
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Topological separation: example 1

X1 X2

Y1 Y2ξ1 ξ2

Figure 2: Let WXi = Yi , for i = 1, 2. The closure of X1 ∪ Y1 (resp. X2 ∪ Y2),

with the edges followed to build the closure, is in red (resp. blue).
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Topological separation: example 2

Figure 3: The split of W is a piece of information that can be insightful.
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An illustration of equational reasoning
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Next steps

• Extend to continuous variables

• Relax the well-posedness assumption

• See how it goes for algorithm design

21



Conclusion

• Pearl’s celebrated do-calculus provides a set of inference rules to

derive an interventional probability from an observational one. The

primitive causal relations are encoded as functional dependencies.

• In this paper, by contrast, we capture causality without reference

to functional dependencies, but with information fields.

• The three rules of do-calculus reduce to a unique sufficient

condition for conditional independence.

• We introduce the topological separation, a notion equivalent to

d-separation, but that highlights other aspects.

• The proposed framework handles systems that cannot be

represented with DAGs, for instance ‘spurious’ edges.

→ A versatile, unifying foundational model
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