Causal Inference Theory with Information Dependency Models

When Causal Inference meets Statistical Analysis, CNAM, Paris, 17-21 avril 2023

Benjamin Heymann, Michel De Lara, Jean-Philippe Chancelier April 17, 2023

BH: Criteo AI Lab, Paris, France
MDL and JPC : Cermics, École des Ponts, Marne-la-Vallée, France

Information Dependency Models and Information Fields

- Information dependency models: causality with information fields
- Information fields: Witsenhausen's 1971 paper ${ }^{1}$
- Witsenhausen's motivation: control of multi-agent systems
- but in fact, it is a very generic tool
- Used to revisit the foundations of game theory ${ }^{2}$
- Theoretical toolbox for causality: the Information Dependency Model (IDM)

[^0]
Making the case for Information Dependency Model (IDM)

- Unlock mathematical toolboxes
- Unifying and generalizing framework for causality ${ }^{3}$
- Elegant style of expression and proof : equational reasoning
- Potential to bridge causality, game theory, control and Reinforcement Learning

[^1]
What is the common denominator to those areas?

In some sense:
"To depend on" = "observing" = "knowing" = "playing after"

The three main ideas

- IDM, as a generalization of causal graphs/an alternative language to describe causal dependencies
- Binary relations, as a way to encode causal influence
- Topological separation, as an alternative definition of d-separation

"Alice, Bob and a coin tossing" configuration space

Example

- two states of Nature $\Omega=\left\{\omega^{+}, \omega^{-}\right\}$(heads/tails)
- two agents a and b
- two possible actions each: $\mathbb{U}_{a}=\left\{T_{a}, B_{a}\right\}, \mathbb{U}_{b}=\left\{R_{b}, L_{b}\right\}$

"Alice, Bob and a coin tossing" configuration space

Example

- two states of Nature $\Omega=\left\{\omega^{+}, \omega^{-}\right\}$(heads/tails)
- two agents a and b
- two possible actions each: $\mathbb{U}_{a}=\left\{T_{a}, B_{a}\right\}, \mathbb{U}_{b}=\left\{R_{b}, L_{b}\right\}$
- product configuration space (8 elements)

$$
\begin{aligned}
& \mathbb{H}=\left\{\omega^{+}, \omega^{-}\right\} \times\left\{T_{a}, B_{a}\right\} \times\left\{R_{b}, L_{b}\right\} \\
&\left(\omega^{+}, B_{a}, L_{b}\right) \\
&\left(\omega^{+}, B_{a}, R_{b}\right) \\
&\left(\omega^{+}, T_{a}, R_{b}\right) \\
&\left(\omega^{-}, B_{a}, L_{b}\right) \\
&\left(\omega^{-}, T_{a}, L_{b}\right)
\end{aligned}
$$

"Alice, Bob and a coin tossing" information partitions

$$
\begin{aligned}
& \text { Bob knows Nature's move } \\
& \mathcal{J}_{a}=\underbrace{\left\{\emptyset,\left\{\omega^{+}\right\},\left\{\omega^{-}\right\},\left\{\omega^{+}, \omega^{-}\right\}\right\}}_{\text {Alice knows Nature's move }} \otimes\left\{\emptyset, \mathbb{U}_{a}\right\} \otimes \underbrace{\left\{\emptyset,\left\{R_{b}\right\},\left\{L_{b}\right\},\left\{R_{b}, L_{b}\right\}\right\}}_{\text {Alice knows what Bob does }}
\end{aligned}
$$

Witsenhausen's philosophy

- \mathbb{H} is the domain of every function
- for any variable a encode the "dependence" by asking for measurability w.r.t. information field ${ }^{4} \mathcal{J}_{a}$, that is,

$$
\begin{gathered}
\lambda_{a}:(\mathbb{H}, \mathcal{H}) \rightarrow\left(\mathbb{U}_{a}, \mathcal{U}_{a}\right) \\
\lambda_{a}^{-1}\left(U_{a}\right) \subset \mathcal{J}_{a}
\end{gathered}
$$

4

- A σ-field over a set \mathbb{D} is a subset $\mathcal{D} \subset 2^{\mathbb{D}}$, containing \mathbb{D}, and which is stable under complement and countable union. (The trivial σ-field over the set \mathbb{D} is $\{\emptyset, \mathbb{D}\}$)
- Probability theory defines a random variable as a measurable mapping from (Ω, \mathcal{F}) to $(\mathbb{U}, \mathcal{U})$.

Structural Causal Model (SCM)

$$
U_{a}(\omega)=\lambda_{a}\left(U_{P(a)}(\omega), \omega_{a}\right) \quad \forall \omega \in \Omega \quad \forall a \in \mathbb{A}
$$

- $\left(\lambda_{a}\right)_{a \in \mathbb{A}}:$ assignments
- $P: \mathbb{A} \rightarrow 2^{\mathbb{A}}$: parental mapping

In the example:

- $\lambda_{\text {Bob }}=\lambda_{\text {Bob }}\left(U_{\text {Coin }}, \omega_{\text {Bob }}\right)$
- $\lambda_{\text {Alice }}=\lambda_{\text {Alice }}\left(U_{\text {Coin }}, U_{\text {Bob }}, \omega_{\text {Alice }}\right)$

Information Dependency Model (IDM)

1. The configuration space is the product space

$$
\mathbb{H}=\prod_{a \in \mathbb{A}} \mathbb{U}_{a} \times \Omega
$$

2. \mathcal{H} is the product field of \mathbb{H}
3. An Information Dependency Model is a collection $\left(\mathcal{J}_{a}\right)_{a \in \mathbb{A}}$ of subfields of \mathcal{H} such that, for $a \in \mathbb{A}$,

$$
\mathcal{J}_{a} \subset \bigotimes u_{b} \otimes \mathcal{F}_{a}
$$

The subfield \mathcal{J}_{a} is called the information field of a.
4. SCM now defined by the field inclusion

$$
\lambda_{a}^{-1}\left(U_{a}\right) \subset \mathcal{J}_{a} \quad \forall a \in \mathbb{A}
$$

From SCM to IDM, an illustration

$$
U_{a}(\omega)=\lambda_{a}\left(U_{P(a)}(\omega), \omega_{a}\right) \quad \forall \omega \in \Omega \quad \forall a \in \mathbb{A}
$$

In the example,

- $\lambda_{\text {Bob }}=\lambda_{\text {Bob }}\left(U_{C o i n}, \omega_{\text {Bob }}\right)$ becomes $\lambda_{\text {Bob }}^{-1}\left(U_{\text {Bob }}\right) \subset \mathcal{J}_{\text {Bob }}$
- $\lambda_{\text {Alice }}=\lambda_{\text {Alice }}\left(U_{\text {Coin }}, U_{\text {Bob }}, \omega_{\text {Alice }}\right)$ becomes $\lambda_{\text {Alice }}^{-1}\left(U_{\text {Alice }}\right) \subset J_{\text {Alice }}$, where

$$
\begin{aligned}
\mathcal{J}_{\text {Bob }} & =\overbrace{\left\{\emptyset,\left\{\omega^{+}\right\},\left\{\omega^{-}\right\},\left\{\omega^{+}, \omega^{-}\right\}\right\}}^{\text {Bob knows Nature's move }} \otimes \overbrace{\left\{\emptyset,\left\{T_{a}, B_{a}\right\}\right\}}^{\text {Bob does not know what Alice does }} \otimes\left\{\emptyset, \mathbb{U}_{b}\right\} \\
\mathcal{J}_{\text {Alice }} & =\underbrace{\left\{\emptyset,\left\{\omega^{+}\right\},\left\{\omega^{-}\right\},\left\{\omega^{+}, \omega^{-}\right\}\right\}}_{\text {Alice knows Nature's move }} \otimes\left\{\emptyset, \mathbb{U}_{a}\right\} \otimes \underbrace{\left\{\emptyset,\left\{R_{b}\right\},\left\{L_{b}\right\},\left\{R_{b}, L_{b}\right\}\right\}}_{\text {Alice knows what Bob does }}
\end{aligned}
$$

DAGs v.s. information fields

	Pearl	Witsenhausen
Structure	DAG	binary relations 5
Dependence	SCM	information fields
	functional relation	measurable policy profiles
Resolution	induction	solution map
Intervention	do operator	encoded with information fields
Causal ordering	fixed	not fixed (might not exist)

Table 1: Correspondences between Pearl's DAG and Witsenhausen's intrinsic model

[^2]
Well-posedness

Figure 1: Hierarchy of systems

(W, H)-Conditional Precedence

Definition

The conditional predecessor set $\mathcal{E}^{W, H} a$ is the smallest subset $B \subset \mathbb{A}$ such that

$$
\mathcal{J}_{a} \cap H \subset \mathcal{H}_{B \cup W} \cap H
$$

(for $W \subset \mathbb{A}, H \subset \mathbb{H}$ and $a \in \mathbb{A}$).
We denote by \bar{B} (or $\bar{B}^{W, H}$) the topological closure of B, which is the smallest subset of \mathbb{A} that contains B and its own predecessors under $\mathcal{E}^{W, H}$.

Topological separation and Do-calculus

Definition (Topological Separation)

We say that B and C are (conditionally) topologically separated (wrt $(W, H))$, and write

$$
B \underset{t}{\|} C \mid(W, H),
$$

if there exists $W_{B}, W_{C} \subset W$ such that

$$
W_{B} \sqcup W_{C}=W \text { and } \overline{B \cup W_{B}} \cap \overline{C \cup W_{C}}=\emptyset
$$

Theorem (Do-calculus)

$$
Y \underset{t}{\|} Z \mid(W, H) \Longrightarrow \operatorname{Pr}\left(U_{Y} \mid U_{W}, U_{\bar{Z}}, H\right)=\operatorname{Pr}\left(U_{Y} \mid U_{W}, H\right)
$$

Topological separation and d-separation are equivalent

Theorem

Let $(\mathcal{V}, \mathcal{E})$ be a graph, that is, \mathcal{V} is a set and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$, and let $W \subset \mathcal{V}$ be a subset of vertices, we have the equivalence

$$
b\left\|_{t} c\left|W \Longleftrightarrow b \|_{d} c\right| W \quad\left(\forall b, c \in W^{c}\right)\right.
$$

Topological separation: example 1

Figure 2: Let $W_{X_{i}}=Y_{i}$, for $i=1,2$. The closure of $X_{1} \cup Y_{1}$ (resp. $X_{2} \cup Y_{2}$), with the edges followed to build the closure, is in red (resp. blue).

Topological separation: example 2

Figure 3: The split of W is a piece of information that can be insightful.

An illustration of equational reasoning

Proof We have that

$$
\begin{aligned}
& \Delta_{W^{c}}\left(\Delta \cup\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\Delta \cup \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \quad \text { (by developing) } \\
& \cup \Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \quad\left(\text { as } \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W}=\mathcal{C}^{W} \text { by }(34 \mathrm{c})\right) \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \quad \text { (also by (34c)) } \\
& \cup \Delta_{W^{\mathrm{c}}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{\mathrm{c}}} \quad \text { (also by (34c) applied twice) } \\
& =\Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \quad \text { (by (34d) and (34e)) } \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right)\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{\mathrm{c}}} \quad \text { (by (34d)) } \\
& \cup \Delta_{W^{\mathrm{c}}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} .
\end{aligned}
$$

This ends the proof.

Next steps

- Extend to continuous variables
- Relax the well-posedness assumption
- See how it goes for algorithm design

Conclusion

- Pearl's celebrated do-calculus provides a set of inference rules to derive an interventional probability from an observational one. The primitive causal relations are encoded as functional dependencies.
- In this paper, by contrast, we capture causality without reference to functional dependencies, but with information fields.
- The three rules of do-calculus reduce to a unique sufficient condition for conditional independence.
- We introduce the topological separation, a notion equivalent to d-separation, but that highlights other aspects.
- The proposed framework handles systems that cannot be represented with DAGs, for instance 'spurious’ edges.
\rightarrow A versatile, unifying foundational model

References

H. S. Witsenhausen.

On information structures, feedback and causality.
SIAM J. Control, 9(2):149-160, May 1971.
围 S. Tikka, A. Hyttinen, and J. Karvanen.
Identifying causal effects via context-specific independence relations.
In Advances in Neural Information Processing Systems, pages 2804-2814, 2019.
B. Heymann, M. De Lara, J. P. Chancelier.

Kuhn's equivalence theorem for games in product form,
In Games and Economic Behavior, Volume 135, 2022,
R
B. Heymann, M. De Lara, J. P. Chancelier.

Causal inference with information fields (long version), 2020. preprint.

[^0]: ${ }^{1}$ On information structures, feedback and causality.
 ${ }^{2}$ Kuhn's equivalence theorem for games in product form

[^1]: ${ }^{3}$ can deal with spurious edges, cycles

[^2]: ${ }^{5}$ minimality for free
 ${ }^{6}$ allows for compositional arguments

