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How do humans learn causality?

1 interventions

source: Wikipedia, Derek Jensen

2 observations under different background conditions

sources: Luc Viatour, https://lucnix.be / Wikipedia, Tomruen

3 putting observations in the broader context of other knowledge

source: Wikipedia, Adriaen van de Venne
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How ML tries to learn causal directions since the 1990s

PC-algorithm:
infer causal DAG G on n variables X1, . . . ,Xn using iid samples
from P(X1, . . . ,Xn) using causal Markov condition and causal
faithfulness

• no interventions

• no different background conditions

• no context
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How ML tries to learn causal directions since the 2000s

• model assumptions beyond causal faithfulness, e.g. additive
noise (linear / non-linear), post-nonlinear models
Kano, Shimizu,.. 2003, Hoyer et al 2008, Zhang & Hyvärinnen 2009, see our book for more references

• semi-parametric models guarantee identifiability even for the
cause-effect problem

• cause-effect problem is a classification task, which renders
benchmarking easier

https://webdav.tuebingen.mpg.de/cause-effect/ (but
don’t overfit this dataset!)

• still a difficult task
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Combine information from different datasets!
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Data from different environments (since the 2010s)

Given the joint distribution of two variables X ,Y under different
background conditions C = 1, . . . , k

• observe that Pc(X ) changes across the conditions

• observe that Pc(Y |X ) = P(Y |X ) remains constant

• infer X → Y because independence of mechanisms states that
P(cause) and P(effect|cause) change independently across
environments

Peters, Janzing, Schölkopf: Elements of Causal Inference 2017

Schölkopf et al: On causal and anticausal learning 2012

Peters et al: Causal inference using invariant prediction: identification and confidence intervals, 2012
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Relation to faithfulness

• let C be a variable known to be root node

• Pc(X ) changing across c means X 6⊥⊥ C

• constant P(Y |X ) across c means Y ⊥⊥ C |X
• causal faithfulness implies causal structure

X

C

Y

(also common causes of X and Y excluded by faithfulness)

• Y → X required mechanisms Pc(X |Y ) and Pc(Y ) to change
together in a contrived way to keep P(Y |X ) constant

X

C

Y

violation of faithfulness / independence of mechanisms
(perspective depending on whether C is a variable or not)

generalization to n nodes: Budhathoki et al: Why did the distribution change? AISTATS 2021
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Merge data from different sets of variables

First combine statistical information from different sources, get
causal insights later

“Marginal problem:” infer properties of joint distribution
P(X) = P(X1, . . . ,Xn) from distributions of subsets
XS1 ,XS2 , . . . ,XSk (a priori no unique solution)
Kellerer: Maßtheoretische Marginalprobleme, 1964

Example: distribution P(X ,Y ,Z ) is not determined by
P(X ,Y ),P(X ,Z ),P(Y ,Z )
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Our current approach: MaxEnt

Garido Mejia, Kirschbaum, Janzing: Obtaining Causal Information by Merging Datasets with MAXENT, AISTATS

2022

• shows why merging generates causal knowledge

• shows why causal knowledge helps for merging

• yields joint distribution that shares qualitative properties with
the true joint

(not clear how it could scale though)
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Inferring joint distributions via MaxEnt

• qiven n variables X = (X1, . . . ,Xn)

• given observed expectations for subsets of variables

E[f1(XS1)] = c1, . . . ,E[fk(XSk )] = ck

• let P̂(X1, . . . ,Xn) be the distribution maximizing entropy
subject to these constraints

• P̂ can be justified as ‘best guess’ for P, given the available
information
see e.g. Grünwald, Dawid: Game theory, maximum entropy,... , 2004

• we will see: even if P̂ is not close to P, it may still capture
essential properties of P
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Predicting cond. indep. from bivariate observations

Lemma (Garido Mejia, Kirschbaum, DJ, 2021)

Let P̂(X1,X2,X3) maximize entropy subject to
P(X1,X2),P(X1,X3),P(X2,X3) then any conditional independence
true in P is also true in P̂.

Proof: basic information theory, conditional independence results
in larger entropy

Application: let X1,X2 be potential causes of
X3 and the set be causally sufficient.

If there is no direct link X1 → X3, we observe
X1 ⊥⊥ X3 |X2 also in P̂

X1 X2

X3
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Causal structure of n nodes from bivariates?

MaxEnt subject to bivariates yields

p̂(x1, . . . , xn) ∼ e
∑

ij gij (xi ,xj )

• information geometric view: projection on manifold of
pair-interactions

• defines undirected graph: draw an edge iff the interaction
term is non-zero

• relation to DAG G non-trivial: contains, subject to a
genericity condition, at least the ’moral graph’ corresponding
to G

see Lauritzen: Graphical models, 1996, for relation between directed and undirected graphical models
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Vision

Combine all available datasets from a domain to get the best guess
for the joint distribution, then try to infer causality
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We can do better merging if we know causal directions!
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Replacing MaxEnt with Causal MaxEnt

... if we know causal directions:

Let X1, . . . ,Xd be variables in causal order

• Step 1: obtain P̂(X1) by maximizing H(X1) subject to all
constraints that restrict P(X1)

• Step 2: then obtain P̂(X1|X1) by maximizing H(X2|X1)
subject to all constraints that restrict P(X1,X2)

• Step 3: then obtain P̂(X3|X2,X1) by ...

• ...

results more plausible distributions than standard MaxEnt
Sun, Janzing, Schölkopf 2006, Janzing 2021
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Interrupt: Motivating Causal MaxEnt

discuss difference between MaxEnt and Causal MaxEnt for a
simple case
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Principle of Insufficient Reason (PIR)

(Bernoulli, Laplace), also called “Principle of Indifference” by
Jaynes

Assign equal probabilities to all possible outcomes under
consideration if there is no evidence for preference to any of them.

?

• knowing only that there is one ball in one of the n urns, one
assigns probability 1/n to each case (maximizes entropy)

• this subjective probability reflects the symmetry of the problem
(Jaynes, Jeffrey,...), ’uninformative prior’ in Bayesian inference
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Why we need a Causal Principle of Insufficient Reason

A ball entering the tube from
above can take 4 different paths:

X = 1 ∧ Y = 3

X = 1 ∧ Y = 2

X = 2 ∧ Y = 1

X = 3 ∧ Y = 1
Y = 3 2 1

X = 1 2 3

Should we really consider all 4 paths equally likely? (amounts to
assigning higher probabilities to entries that enable more options
for the exits)
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Why we need a Causal Principle of Insufficient Reason

• more plausible to consider
all entrances equally likely

• given that entrance X = 1 is
taken, both options at the
bifurcation point are equally
likely

• exits Y = 1, 2, 3 obtain
probabilities 2/3, 1/6, 1/6 Y = 3 2 1

X = 1 2 3

device is symmetric w.r.t. X and Y , asymmetry of PX ,Y based on
causal direction
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Causal Principle of Insufficient Reason (CPIR)

• assign equal probabilities to
every option for the cause
(knowledge about the
mechanism relating cause to
effect is irrelevant at this
point)

• assign equal probabilities to
every remaining option for
the effect, given the cause Y = 3 2 1

X = 1 2 3
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Causal PIR (abstract version)

• given two variables X ,Y with finite range X ,Y

• given the knowledge that X → Y and that the causal
mechanism only allows (x , y) ∈ R where R ⊂ X × Y

• let PX be the uniform distribution over all x allowed by R

• for any x , let PY |X=x be the uniform distribution over all y
with (x , y) ∈ R

• Then the Causal PIR prior reads PX→Y := PY |XPX

not uniform over R
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Properties of Causal MaxEnt vs MaxEnt

• Causal MaxEnt distribution has at most the same entropy as
MaxEnt

(maximizing H(X ) + H(Y |X ) cannot result in less entropy
than first maximizing H(X ) and then H(Y |X ))

• hence, Causal MaxEnt uses causal direction to provide a more
specific prediction

• in the spirit of ‘On causal and anticausal learning’ by
Schölkopf et al, 2012: knowing causal directions entails
inductive bias that helps for better predictions
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Use Causal MaxEnt for the merging problem
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Bivariates overlapping at X1

Given P(X1,X2) and P(X1,X3) with causal order X1,X2,X3

• step 1 sets P̂(X1) := P(X1) given by the marginals P(X1,X2)
and P(X1,X3)

• step 2 sets P̂(X2|X1) := P(X2|X1) given by P(X1,X2)

• step 3 maximizes H(X3|X2,X1) subject to the given P(X3,X1)
which results in X3 ⊥⊥ X2 |X1

• corresponds to the fork X2 ← X1 → X3
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Bivariates overlapping at X2

Given P(X1,X2) and P(X2,X3) with causal order X1,X2,X3

• skip steps 1 and 2 yield P̂(X1,X2) := P(X1,X2) is given

• step 3 maximizes H(X3|X2,X1) subject to the given P(X3,X2)

• results in X1 ⊥⊥ X3 |X2

• corresponds to the chain X1 → X2 → X3
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Bivariates overlapping at X3

Given P(X1,X3) and P(X2,X3) with causal order X1,X2,X3

• step 1 sets P̂(X1) := P(X1) as given by P(X1,X2)

• step 2 sets P̂(X2) := P(X2) taken independently from
P(X2,X3), hence X1 ⊥⊥ X2

• corresponds to the collider X1 → X3 ← X2

• step 3 obtains P̂(X3|X2,X1) by maximizing H(X3|X2,X1)

26



Common rule

X2

X1

X3 X2

X1

X3 X2

X1

X3

In each of the three cases, Causal MaxEnt dropped the edge whose
marginal was missing
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Comparison to usual MaxEnt

corresponds to undirected graphical models

X2

X1

X3 X2

X1

X3 X2

X1

X3

yields always Xi ⊥⊥ Xj |Xk when P(Xi ,Xj) is missing
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Experiments with Causal MaxEnt on simulated data

• potential causes: confounded binary variables X1, ...,X5,
target X0

• randomly generate links between some Xj and X0 and
structural equations

• observe all bivariate distributions

• infer presence of links from Causal MaxEnt distribution
P̂(X1, . . . ,X5,X0)

(3 different confounding structures)
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Results

• identification of edges performs almost as good as kernel
conditional independence tests (green curve) on the true joint
distribution

• Causal MaxEnt (blue curve) only slightly worse than if joint
distribution of potential causes is given (orange curve)
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Experiments with real data and known joint samples

www.gapminder.org/data/ provides country-level data of social,
economic, and environmental factors (each country is a data point)

Variables include, e.g.

• children per woman (FER)

• GDP per capita (GDP)

• Human Development Index (HDI)

• life expectancy (LE)

• CO2 emissions (CO2)

(ongoing work) all 4 triple-wise conditional independences we
checked coincided with kernel CI tests
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Merging as a new type of prediction problem
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Different view on the above

• causal models help inferring joint statistics of variables that
have not been observed together (regardless of Causal
MaxEnt)

• causal information helps putting distributions together

(asymmetry of puzzle pieces makes it easier)

• test causal models by testing the inferred joint distribution
without interventions
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Exploit causal discovery for merging

• assume a causal discovery algorithm (e.g. LiNGAM) infers
from P(X ,Y ) that X → Y is an unconfounded sense

• assume it also infers that Y → Z in an unconfounded sense
from P(Y ,Z )

• then the joint causal model reads X → Y → Z , hence

P(Z ,X ) =
∑
y

P(Z |y)P(y ,X ).

• can be tested on data from P(Z ,X )
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Generalization: New type of learning scenario

• given the variables X := {X1, . . . ,Xn}
• given an algorithm that infers a causal graph G on X from

marginal distributions

P(XS1),P(XSk ), . . . ,P(XSk ) (“training data“)

for Si ⊂ {1, . . . , n}

• use G to predict properties of previously unseen P(XSk+1
)

(“test data”)

35



Why should we consider such a scenario?

“All models are wrong, but some are useful”
(statistician George Box, 1976)

• Hypothesis: causal models are helpful if they perform good
at the above prediction task of merging distributions

• Flaw in current discussions: researcher in causal discovery
seem to be believe in “the true DAG“
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Intuitive conditions for causal models to be useful

• no causal direction should be wrong

• sufficiently sparse graph to get actionable insights

• falsifiable predictions
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Example for a “true” but useless causal model

• no actionable insights except for “don’t touch the system, you
never know what happens”

• impossible to falsify even by interventions
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Slightly more helpful causal model: complete DAG

• falsifiable by interventions (affect only descendants)

• not falsifiable from passive observations (no conditional
independences)
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More useful after sparsification

• falsifiable from passive observations

• more actionable insights (explaining a disease by one cause is
more helpful than attributing it to the entire lifestyle)
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Recall: standard iid prediction tasks

• only sufficiently simple models (that don’t capture the full
truth) are useful

• generalize from training to test data (guarantees from
statistical learning theory for a given loss function, sample
size, model class capacity)
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“Overfitting” in causal discovery

open question: in what sense does the left graph provide better
predictions?

• loss function for causal models unclear

• capacity measure of model classes unclear

• prediction scenario unclear (what does ’generalization’ mean?
Learning causality is not primarily a finite sample problem)
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Finite sample issues of causal discovery on top

• relies on joint statistical properties that are hard to estimate
from finite data (e.g. conditional independences)

• no clear advice for setting significance thresholds (inferred
arrows can flip their direction)

• robustness against violating assumptions hardly understood

• joint iid data from n-variables rarely given, only observations
from subsets of variables
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Two different reasons for sparsification of DAGs

1 interpretable results

2 small sample sizes

lowering threshold for p-values with increasing sample size to
achieve 1 obscures the difference between both reasons

44



Goal: statistical learning theory of causality

(generalization bounds that guide us in finding the right model
complexity with respect to causal graphs)

• given some class M of causal graphs (e.g. DAGs)

• assume a model M ∈M is consistent with a set of “training”
marginals P(XS1), . . . ,P(XSk )

• if the capacity of M is small enough, does M then correctly
predict properties of P(XSk+1

) with high confidence, i.e.
generalize to “test” marginals?
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Example for a simple task: DAGs as binary classifiers

any DAG G with nodes X := (X1, . . . ,Xn) can be seen as classifier
on triples of sets of nodes:

G (XA,XB ,XC ) = 0 iff XC d-separates XB from XA

Methodological justification of faithfulness: Markov condition
alone can only predict independences, no dependences
(believe in faithfulness not because it is true but because the belief
helps)
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Example for a “small” causal model class

polytree DAGs: DAGs without undirected cycles (every two nodes
are connected by at most one path)

Lemma (DJ, 2018)

The set of polytree-DAGs is a class of classifiers on triples of
random variables (via conditional independence) whose VC
dimension is at most n(log2 n + 1), if n is the number of nodes.

Janzing: Merging joint distributions via causal model classes with low VC dimension, arXiv:1804.03206
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Generalization bound for predicting cond. independences

• blue: number of triples of variables

• red: number of triple conditional independence tests required
to fit a polytree DAG such that Vapnik Chervonencis bounds
from conventional statistical learning theory guarantee
generalization to unobserved triples

Janzing: Merging joint distributions via causal model classes with low VC dimension, arXiv:1804.03206
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Abandon the idea of absolute truth...

• irrelevant whether the inferred conditional independences are
true (what does this mean btw?)

• irrelevant whether the inferred DAG is ‘true’ (what does this
mean btw?)

VC bounds guarantee prediction of the outcome of the particular
CI test chosen for the training triples
(regardless of quality of test and chosen p-value)
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‘Relative’ causality

A DAG can be valuable for good predictions

• with respect to a particular level of complexity of dependences
(e.g. partial correlations instead of conditional independences
to capture linear relations only)

• with respect to a particular accuracy
(e.g. reject independence only for very low p-values)
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Did we forget about our goal of causal discovery?

is causality just about predicting statistical relations between
variables that have not been observed together?

isn’t causality actually defined via interventions?

51



Sure, but ...

assume we ask for the causal relation between X and Y

• add a variable I describing a randomized intervention on X
and draw the arrow

I X

• observing I ⊥⊥ Y |X provides strong evidence for I causing Y
only via X

• hence, causal structure is likely to be

I X Y

• together with the causal consensus I → X and I 6→ Y , getting
conditional independences right is almost sufficient to capture
causality
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Working hypothesis (with a grain of salt)

• an algorithm that correctly predicts statistical relations to
variables from a sufficiently large consensus causal
substructure is likely to capture causality in an interventional
sense

• benchmarking causal discovery algorithm by just testing their
predictions of joint statistical properties may be a good proxy
for benchmarking causal results

• avoids the problem that interventions are sometimes hard to
define (e.g. interventions with unknown intervention target,
see also my arxiv preprint “Phenomenological Causality”)
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Thank you for your attention!
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