

Identification in time series summary causal graphs

A. Meynaoui*, C. K. Assaad**, E. Devijver[†], E. Gaussier[†], and G. Gössler[‡]

** EasyVista * Univ. Rennes 2, IRMAR [†] Univ. Grenoble Alpes, CNRS, INP, LIG [‡] Univ. Grenoble Alpes, CNRS, INRIA, Grenoble INP, LIG

< 67 ▶

1/19

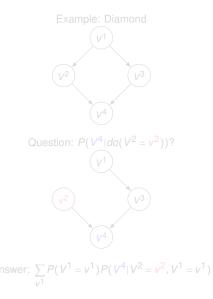
Notations:

- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G

Action: Assign fixed values to a set of variables (*do* operator)

Causal query: Causal effect under the action

Estimand: Distribution of the target without the operator do



I. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

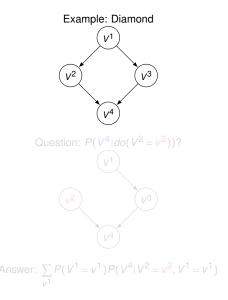
Notations:

- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G

Action: Assign fixed values to a set of variables (*do* operator)

Causal query: Causal effect under the action

Estimand: Distribution of the target without the operator do



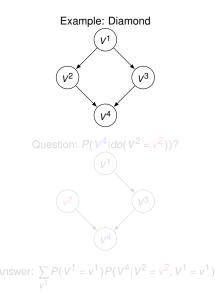
I. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

Notations:

- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G
- Action: Assign fixed values to a set of variables (*do* operator)

Causal query: Causal effect under the action

Estimand: Distribution of the target without the operator do



I. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

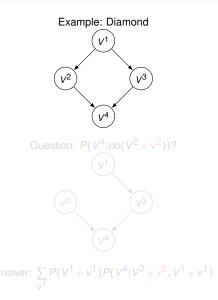
Notations:

- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G

Action: Assign fixed values to a set of variables (*do* operator)

Causal query: Causal effect under the action

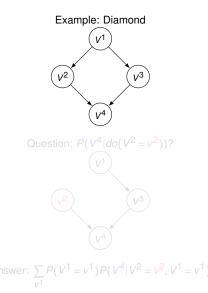
Estimand: Distribution of the target without the operator do



J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

Notations:

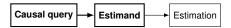
- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G
- Action: Assign fixed values to a set of variables (*do* operator)
- Causal query: Causal effect under the action
- **Estimand:** Distribution of the target without the operator do

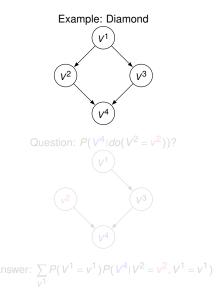


I. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

Notations:

- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G
- Action: Assign fixed values to a set of variables (*do* operator)
- Causal query: Causal effect under the action
- **Estimand:** Distribution of the target without the operator do

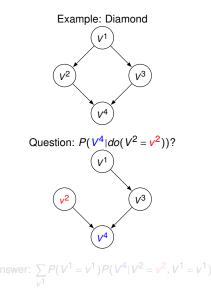




J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

Notations:

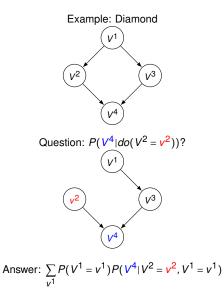
- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G
- Action: Assign fixed values to a set of variables (*do* operator)
- Causal query: Causal effect under the action
- **Estimand:** Distribution of the target without the operator do



J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

Notations:

- G: directed acyclic graph (DAG)
- V: set of nodes in G
- E: set of directed edges in G
- p: number of nodes in G
- Action: Assign fixed values to a set of variables (*do* operator)
- Causal query: Causal effect under the action
- **Estimand:** Distribution of the target without the operator do

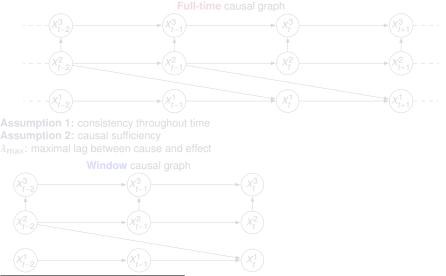


< 67 >

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

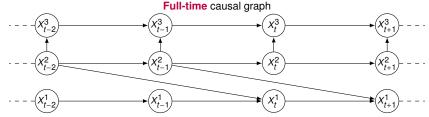
	Quarter on Causality, CNAM, Paris	18/04/2023	2/19
--	-----------------------------------	------------	------

$\mathbf{X} = (X^1, X^2, X^3)$: set of time series



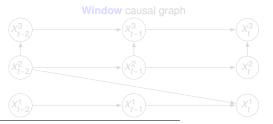
C. K. Assaad, E. Devijver, E. Gaussier. Survey and Evaluation of Causal Discovery Methods for Time Series. JAIR, 2022. 4 🗗 🕨

 $\mathbf{X} = (X^1, X^2, X^3)$: set of time series



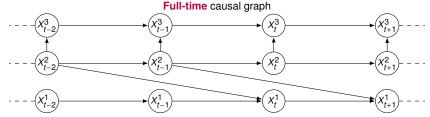
Assumption 1: consistency throughout time Assumption 2: causal sufficiency

 λ_{max} : maximal lag between cause and effect



C. K. Assaad, E. Devijver, E. Gaussier. Survey and Evaluation of Causal Discovery Methods for Time Series. JAIR, 2022. 4 🗇 🕨

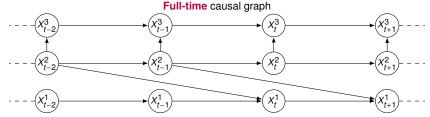
 $\mathbf{X} = (X^1, X^2, X^3)$: set of time series



Assumption 1: consistency throughout time Assumption 2: causal sufficiency λ_{max} : maximal lag between cause and effect

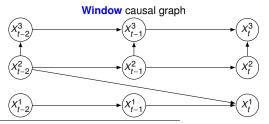
C. K. Assaad, E. Devijver, E. Gaussier. Survey and Evaluation of Causal Discovery Methods for Time Series. JAIR, 2022. 4 🗇 🕨

 $\mathbf{X} = (X^1, X^2, X^3)$: set of time series



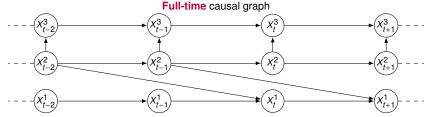
Assumption 1: consistency throughout time Assumption 2: causal sufficiency

 λ_{max} : maximal lag between cause and effect



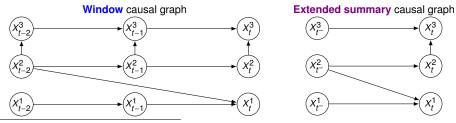
C. K. Assaad, E. Devijver, E. Gaussier. Survey and Evaluation of Causal Discovery Methods for Time Series. JAIR, 2022. 4 🗇 🕨

 $\mathbf{X} = (X^1, X^2, X^3)$: set of time series



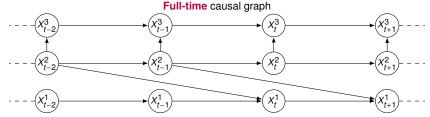
Assumption 1: consistency throughout time Assumption 2: causal sufficiency

 λ_{max} : maximal lag between cause and effect



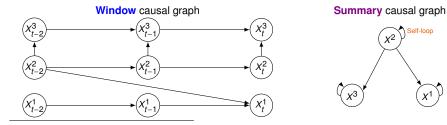
C. K. Assaad, E. Devijver, E. Gaussier. Survey and Evaluation of Causal Discovery Methods for Time Series. JAIR, 2022. 4 🗇

 $\mathbf{X} = (X^1, X^2, X^3)$: set of time series



Assumption 1: consistency throughout time Assumption 2: causal sufficiency

 λ_{max} : maximal lag between cause and effect



C. K. Assaad, E. Devijver, E. Gaussier. Survey and Evaluation of Causal Discovery Methods for Time Series. JAIR, 2022.

 X^1

Problem setting

Problem

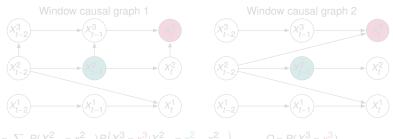
Given a(n) (extended) summary graph $G_{(e)s}$, a maximal lag λ_{max} and a causal query Q, find the estimand of the causal query.

▲ Several estimands of the same causal query!

Example:

•
$$Q = P(X_t^3 = x_t^3 | do(X_{t-1}^2 = x_{t-1}^2))$$

• $\lambda_{max} = 2$



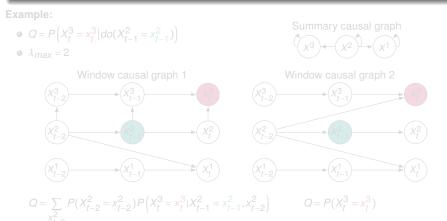
 $Q = \sum_{\substack{x_{t-2}^2 \\ x_{t-2}^2}} P(X_{t-2}^2 = x_{t-2}^2) P(X_t^3 = x_t^3 | X_{t-1}^2 = x_{t-1}^2, x_{t-2}^2) \qquad Q = P(X_t^3 = x_{t-1}^3 | X_{t-2}^2)$

Problem setting

Problem

Given a(n) (extended) summary graph $G_{(e)s}$, a maximal lag λ_{max} and a causal query Q, find the estimand of the causal query.

A Several estimands of the same causal query!



Problem setting

Problem

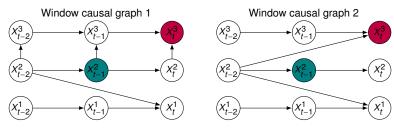
Given a(n) (extended) summary graph $G_{(e)s}$, a maximal lag λ_{max} and a causal query Q, find the estimand of the causal query.

A Several estimands of the same causal query!

Example:

•
$$Q = P(X_t^3 = x_t^3 | do(X_{t-1}^2 = x_{t-1}^2))$$

• $\lambda_{max} = 2$



 $Q = \sum_{\substack{x_{t-2}^2 \\ x_{t-2}}} P(X_{t-2}^2 = x_{t-2}^2) P\left(X_t^3 = x_t^3 | X_{t-1}^2 = x_{t-1}^2, x_{t-2}^2\right)$

Summary causal graph

 $Q = P(X_t^3 = x_t^3)$

Objective

Given a(n) (extended) summary graph G_s (or G_{es}), a maximal lag λ_{max} and a causal query

$$Q = P\left(X_t^2 = \frac{x_t^2}{t} | do(X_{t-\mu}^1 = x_{t-\mu}^1)\right),$$

with $\mu \ge 0$, we aim to grouping together all the window graphs giving the same estimand.

1

Abuse of notation: $P(x_t^2 | do(x_{t-\mu}^1)) := Q.$

Definition (Equivalence classes)

Two window graphs G_{W_1} and G_{W_2} compatible with G_s (or G_{es}) are equivalent if the estimands of Q in G_{W_1} and G_{W_2} are the sames.

Technical problem: The estimand is not uniquely defined (many back-door sets).

(EasyVista,	UGA
-------------	-----

Objective

Given a(n) (extended) summary graph G_s (or G_{es}), a maximal lag λ_{max} and a causal query

$$Q = P\left(X_t^2 = \frac{x_t^2}{t} | do(X_{t-\mu}^1 = x_{t-\mu}^1)\right),$$

with $\mu \ge 0$, we aim to grouping together all the window graphs giving the same estimand.

1

Abuse of notation: $P(x_t^2 | do(x_{t-\mu}^1)) := Q.$

Definition (Equivalence classes)

Two window graphs G_{W_1} and G_{W_2} compatible with G_s (or G_{es}) are equivalent if the estimands of Q in G_{W_1} and G_{W_2} are the sames.

Technical problem: The estimand is not uniquely defined (many back-door sets).

(EasyVista,	UGA
-------------	-----

Objective

Given a(n) (extended) summary graph G_s (or G_{es}), a maximal lag λ_{max} and a causal query

$$Q = P\left(X_t^2 = \frac{x_t^2}{t} | do(X_{t-\mu}^1 = x_{t-\mu}^1)\right),$$

with $\mu \ge 0$, we aim to grouping together all the window graphs giving the same estimand.

1

Abuse of notation: $P(x_t^2|do(x_{t-\mu}^1)) := Q.$

Definition (Equivalence classes)

Two window graphs G_{W_1} and G_{W_2} compatible with G_s (or G_{es}) are equivalent if the estimands of Q in G_{W_1} and G_{W_2} are the sames.

Technical problem: The estimand is not uniquely defined (many back-door sets).

ldea

Each window graph G_w is characterized by the set Pa_w of X_t^2 parents in G_w .

Characterization: Each class \mathscr{C} is defined by a set of parents $Pa_{\mathscr{C}}$. The estimand Q_e of Q associated with \mathscr{C} is

$$Q_{e} = \sum_{\mathcal{Y}_{\mathscr{C}}} P(x_{t}^{2} | x_{t-\mu}^{1}, y_{\mathscr{C}}) \times P(y_{\mathscr{C}}),$$

where the sum covers all potential values of $y_{\mathscr{C}}$ in $Pa_{\mathscr{C}}$.

Open question: What is the "optimal" characterization back-door set ?

< A >

ldea

Each window graph G_w is characterized by the set P_{a_w} of X_t^2 parents in G_w .

Characterization: Each class \mathscr{C} is defined by a set of parents $Pa_{\mathscr{C}}$. The estimand Q_e of Q associated with \mathscr{C} is

$$Q_{e} = \sum_{\mathbf{y}_{\mathscr{C}}} P(\mathbf{x}_{t}^{2} | \mathbf{x}_{t-\mu}^{1}, \mathbf{y}_{\mathscr{C}}) \times P(\mathbf{y}_{\mathscr{C}}),$$

where the sum covers all potential values of $y_{\mathscr{C}}$ in $Pa_{\mathscr{C}}$.

Open question: What is the "optimal" characterization back-door set ?

ldea

Each window graph G_W is characterized by the set Pa_W of X_t^2 parents in G_W .

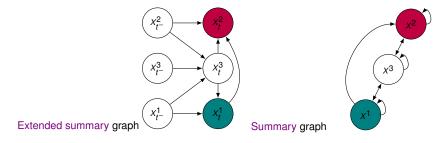
Characterization: Each class \mathscr{C} is defined by a set of parents $Pa_{\mathscr{C}}$. The estimand Q_e of Q associated with \mathscr{C} is

$$Q_{e} = \sum_{\mathbf{y}_{\mathscr{C}}} P(\mathbf{x}_{t}^{2} | \mathbf{x}_{t-\mu}^{1}, \mathbf{y}_{\mathscr{C}}) \times P(\mathbf{y}_{\mathscr{C}}),$$

where the sum covers all potential values of $y_{\mathscr{C}}$ in $Pa_{\mathscr{C}}$.

Open question: What is the "optimal" characterization back-door set ?

Example: Consider $\lambda_{max} = 2$, $\mu = 0$ and



Number of window graphs: 243

< 67 ►

Back to the general case: let \mathscr{C}_i and \mathscr{C}_j be two different classes. Under which condition, we can have a common estimand in both classes ?

Answer: If for all window graphs G_W in $\mathcal{C}_j \cup \mathcal{C}_j$, we have

 $\left[\mathsf{Pa}_{\mathscr{C}_i} \cup \mathsf{Pa}_{\mathscr{C}_j} \right] \cap \mathsf{De}(X^1_{t-\mu}, X^2_t) = \varnothing,$

where $De(\cdot, \cdot)$ is the set of common descendants.

Proposition

Let G_{es} be an extended summary graph and \mathscr{C}_i , \mathscr{C}_j two different classes. Then, for all G_w in $\mathscr{C}_i \cup \mathscr{C}_j$, we have

$$Q_{e} = \sum_{\mathcal{Y}_{\mathscr{C}_{ij}}} P(x_{t}^{2} | x_{t-\mu}^{1}, \mathcal{Y}_{\mathscr{C}_{ij}}) \times P(\mathcal{Y}_{\mathscr{C}_{ij}}),$$

where the sum covers all potential values of $y_{\mathcal{C}_{ii}}$ in $Pa_{\mathcal{C}_i} \cup Pa_{\mathcal{C}_i}$.

Idea of the proof: a potential parent of $X_{t-\mu}^{\dagger}$ is a potential descendant of X_t^2 only if $\mu = 0$. This is in conflict with the DAG assumption.

Back to the general case: let \mathscr{C}_i and \mathscr{C}_j be two different classes. Under which condition, we can have a common estimand in both classes ?

Answer: If for all window graphs G_W in $\mathcal{C}_i \cup \mathcal{C}_i$, we have

$$\left[\mathsf{Pa}_{\mathscr{C}_{i}} \cup \mathsf{Pa}_{\mathscr{C}_{j}} \right] \cap \mathsf{De}(X_{t-\mu}^{1}, X_{t}^{2}) = \varnothing,$$

where $De(\cdot, \cdot)$ is the set of common descendants.

Proposition

Let G_{es} be an extended summary graph and \mathscr{C}_i , \mathscr{C}_j two different classes. Then, for all G_w in $\mathscr{C}_i \cup \mathscr{C}_j$, we have

$$Q_e = \sum_{y_{\mathscr{C}_{ij}}} P(x_t^2 | x_{t-\mu}^1, y_{\mathscr{C}_{ij}}) \times P(y_{\mathscr{C}_{ij}}),$$

where the sum covers all potential values of $y_{\mathcal{C}_{ii}}$ in $Pa_{\mathcal{C}_i} \cup Pa_{\mathcal{C}_i}$.

Idea of the proof: a potential parent of $X_{t-\mu}^1$ is a potential descendant of X_t^2 only if $\mu = 0$. This is in conflict with the DAG assumption.

Back to the general case: let \mathscr{C}_i and \mathscr{C}_j be two different classes. Under which condition, we can have a common estimand in both classes ?

Answer: If for all window graphs G_W in $\mathcal{C}_i \cup \mathcal{C}_i$, we have

$$\left[\mathsf{Pa}_{\mathscr{C}_{i}} \cup \mathsf{Pa}_{\mathscr{C}_{j}} \right] \cap \mathsf{De}(X_{t-\mu}^{1}, X_{t}^{2}) = \varnothing,$$

where $De(\cdot, \cdot)$ is the set of common descendants.

Proposition

Let G_{es} be an extended summary graph and C_i , C_j two different classes. Then, for all G_w in $C_j \cup C_j$, we have

$$Q_e = \sum_{y_{\mathscr{C}_{ij}}} P(x_t^2 | x_{t-\mu}^1, y_{\mathscr{C}_{ij}}) \times P(y_{\mathscr{C}_{ij}}),$$

where the sum covers all potential values of $y_{\mathcal{C}_{ii}}$ in $Pa_{\mathcal{C}_i} \cup Pa_{\mathcal{C}_i}$.

Idea of the proof: a potential parent of $X_{t-\mu}^1$ is a potential descendant of X_t^2 only if $\mu = 0$. This is in conflict with the DAG assumption.

Back to the general case: let \mathscr{C}_i and \mathscr{C}_j be two different classes. Under which condition, we can have a common estimand in both classes ?

Answer: If for all window graphs G_W in $\mathcal{C}_i \cup \mathcal{C}_i$, we have

$$\left[\textit{Pa}_{\mathscr{C}_{i}} \cup \textit{Pa}_{\mathscr{C}_{j}}\right] \cap \textit{De}(X_{t-\mu}^{1}, X_{t}^{2}) = \varnothing,$$

where $De(\cdot, \cdot)$ is the set of common descendants.

Proposition

Let G_{es} be an extended summary graph and C_i , C_j two different classes. Then, for all G_w in $C_j \cup C_j$, we have

$$Q_e = \sum_{y_{\mathscr{C}_{ij}}} P(x_t^2 | x_{t-\mu}^1, y_{\mathscr{C}_{ij}}) \times P(y_{\mathscr{C}_{ij}}),$$

where the sum covers all potential values of $y_{\mathcal{C}_{ii}}$ in $Pa_{\mathcal{C}_i} \cup Pa_{\mathcal{C}_i}$.

Idea of the proof: a potential parent of $X_{t-\mu}^1$ is a potential descendant of X_t^2 only if $\mu = 0$. This is in conflict with the DAG assumption.

Proposition

Let G_{es} be an extended summary graph with a maximal lag λ_{max} . Let \mathscr{C}_{max} be the largest class (with the largest cardinal). Then, for all window graph G_W , we have

$$Q_e = \sum_{y_{\mathscr{C}_{max}}} P(x_t^2 | x_{t-\mu}^1, y_{\mathscr{C}_{max}}) \times P(y_{\mathscr{C}_{max}}),$$

where the sum covers all potential values of $y_{\mathscr{C}_{max}}$ in $Pa_{\mathscr{C}_{max}}$.

But...

The same result does not hold for summary graphs!

Proposition

Let G_{es} be an extended summary graph with a maximal lag λ_{max} . Let \mathscr{C}_{max} be the largest class (with the largest cardinal). Then, for all window graph G_W , we have

$$Q_e = \sum_{y_{\mathscr{C}_{max}}} P(x_t^2 | x_{t-\mu}^1, y_{\mathscr{C}_{max}}) \times P(y_{\mathscr{C}_{max}}),$$

where the sum covers all potential values of $y_{\mathscr{C}_{max}}$ in $Pa_{\mathscr{C}_{max}}$.

But...

The same result does not hold for summary graphs!

Proposition

Let G_{es} be an extended summary graph with a maximal lag λ_{max} . Let \mathscr{C}_{max} be the largest class (with the largest cardinal). Then, for all window graph G_W , we have

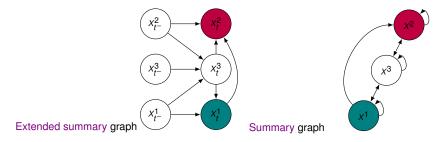
$$Q_e = \sum_{y_{\mathscr{C}_{max}}} P(x_t^2 | x_{t-\mu}^1, y_{\mathscr{C}_{max}}) \times P(y_{\mathscr{C}_{max}}),$$

where the sum covers all potential values of $y_{\mathscr{C}_{max}}$ in $Pa_{\mathscr{C}_{max}}$.

But...

The same result does not hold for summary graphs!

Example: Consider $\lambda_{max} = 2$, $\mu = 0$ and



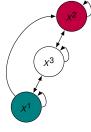
Universal estimand:

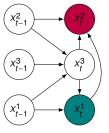
$$Q_e = \sum_{y_{\mathscr{C}_{max}}} P(x_t^2 | x_{t-\mu}^1, y_{\mathscr{C}_{max}}) \times P(y_{\mathscr{C}_{max}}),$$

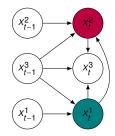
No universal estimand ...

where the sum covers all potential values of $y_{\mathscr{C}_{\max}}$ in $\{X_{t-2}^1, X_{t-1}^1, X_t^3\}$.

No universal estimand for a summary graph.







Summary graph

Window graph G_{W_1} in \mathscr{C}_i

Window graph G_{W_2} in \mathscr{C}_i

$$Pa_{\mathscr{C}_i} = \left\{ X_{t-1}^1, X_t^3 \right\}$$

$$Pa_{\mathscr{C}_{i}} = \left\{ X_{t-1}^{1}, X_{t-1}^{3} \right\}$$

The set $Pa_{\mathscr{C}_i} \cup Pa_{\mathscr{C}_j} = \{X_{t-1}^1, X_{t-1}^3, X_t^3\}$ is not a back-door set in G_{W_2} .

Definition (Super equivalence)

Let G_s be a summary graph, two classes \mathscr{C}_i and \mathscr{C}_j are super equivalent if $Pa_{\mathscr{C}_i} \cup Pa_{\mathscr{C}_j}$ is a valid back-door set of the query Q over \mathscr{C}_i and \mathscr{C}_j .

Definition (Super class)

Let G_s be a summary graph, a super class is the maximal set of equivalence classes that are super equivalent for the causal query Q.

General result. If *G_{es}* is an extended summary graph, then there exists a unique super class. The universal estimand is

$$Q_e = \sum_{\mathcal{Y}_{\mathscr{C}}} P(x_t^2 | x_{t-\mu}^1, \mathcal{Y}_{\mathscr{C}}) \times P(\mathcal{Y}_{\mathscr{C}}),$$

where the sum covers all potential values of $y_{\mathscr{C}_{max}}$ in the largest class.

Definition (Super equivalence)

Let G_s be a summary graph, two classes \mathscr{C}_i and \mathscr{C}_j are super equivalent if $Pa_{\mathscr{C}_i} \cup Pa_{\mathscr{C}_j}$ is a valid back-door set of the query Q over \mathscr{C}_i and \mathscr{C}_j .

Definition (Super class)

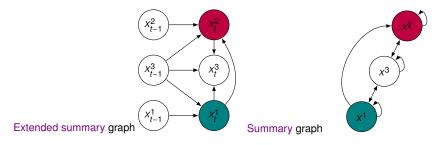
Let G_s be a summary graph, a super class is the maximal set of equivalence classes that are super equivalent for the causal query Q.

General result. If *G_{es}* is an extended summary graph, then there exists a unique super class. The universal estimand is

$$Q_{e} = \sum_{y_{\mathscr{C}}} P(x_{t}^{2} | x_{t-\mu}^{1}, y_{\mathscr{C}}) \times P(y_{\mathscr{C}}),$$

where the sum covers all potential values of $y_{\mathscr{C}_{max}}$ in the largest class.

Consider $\lambda_{max} = 2$, $\mu = 0$ and



Generative model. Given a window causal graph G_W , the time series X^i for $i \in \{1, 2, 3\}$ is generated using the equations:

$$X_t^i = \sum_{X_{t'}^j \in Pa_{G_W}(X_t^i)} \alpha_{ij} X_{t'}^j + 0.1\xi_t^i,$$

where $\xi_t^i \sim N(0,1)$ and α_{ij} in [0.2, 1] (randomly chosen).

We aim to estimate the expectation $\mathbb{E}[X_t^2|do(X_t^1 = x_t^1)]$ for a given window graph G_W .

We show that

$$\mathbb{E}[X_t^2 | do(X_t^1 = x_t^1)] = \alpha_{21} x_t^1.$$

We estimate α_{21} using a linear regression.

Extended summary graph. Consider the classes \mathscr{C}_1 , \mathscr{C}_4 and \mathscr{C}_9 with

$$\begin{aligned} & Pa_{\mathscr{C}_{1}} = \left\{ X_{t}^{1}, X_{t-1}^{1}, X_{t-1}^{3} \right\}, Pa_{\mathscr{C}_{4}} = \left\{ X_{t}^{1}, X_{t-2}^{1}, X_{t-2}^{3} \right\} \\ & Pa_{\mathscr{C}_{9}} = \left\{ X_{t}^{1}, X_{t-1}^{1}, X_{t-1}^{3}, X_{t-2}^{1}, X_{t-2}^{3} \right\} \end{aligned}$$

The estimation is performed by generating a 100 points for each time series.

We show that

$$\mathbb{E}[X_t^2 | do(X_t^1 = x_t^1)] = \alpha_{21} x_t^1.$$

We estimate α_{21} using a linear regression.

Extended summary graph. Consider the classes \mathscr{C}_1 , \mathscr{C}_4 and \mathscr{C}_9 with

$$Pa_{\mathscr{C}_{1}} = \left\{X_{t}^{1}, X_{t-1}^{1}, X_{t-1}^{3}\right\}, Pa_{\mathscr{C}_{4}} = \left\{X_{t}^{1}, X_{t-2}^{1}, X_{t-2}^{3}\right\}$$
$$Pa_{\mathscr{C}_{9}} = \left\{X_{t}^{1}, X_{t-1}^{1}, X_{t-1}^{3}, X_{t-2}^{1}, X_{t-2}^{3}\right\}$$

The estimation is performed by generating a 100 points for each time series.

We show that

$$\mathbb{E}[X_t^2 | do(X_t^1 = x_t^1)] = \alpha_{21} x_t^1.$$

We estimate α_{21} using a linear regression.

Extended summary graph. Consider the classes \mathscr{C}_1 , \mathscr{C}_4 and \mathscr{C}_9 with

$$Pa_{\mathscr{C}_{1}} = \left\{X_{t}^{1}, X_{t-1}^{1}, X_{t-1}^{3}\right\}, Pa_{\mathscr{C}_{4}} = \left\{X_{t}^{1}, X_{t-2}^{1}, X_{t-2}^{3}\right\}$$
$$Pa_{\mathscr{C}_{9}} = \left\{X_{t}^{1}, X_{t-1}^{1}, X_{t-1}^{3}, X_{t-2}^{1}, X_{t-2}^{3}\right\}$$

The estimation is performed by generating a 100 points for each time series.

MAE: Mean Absolute Error.

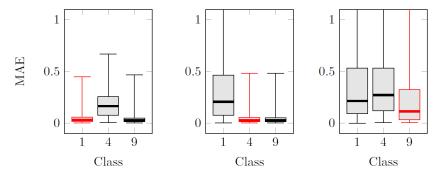
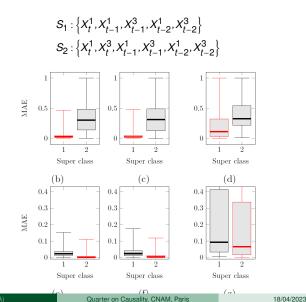


Figure: Estimation boxplots over each class.

(EasyVista, UGA)

Summary graph. Two super classes S_1 and S_2 .



Quarter on Causality, CNAM, Paris

16/19

< 67 ►

Practical use of the algorithm output

Algorithm output:

- Super classes $S_1, ..., S_p$,
- Associated estimands Q_e^1, \ldots, Q_e^p ,
- Proportions w_1, \ldots, w_p .

Practical use:

Most likely estimand:

$$MLE = \mathscr{E}_{argmax(w_1,...,w_p)},$$

• Weighted mean estimand:

$$WME = \sum_{i=1}^{p} w_i Q_e^i$$

18/04/2023

Practical use of the algorithm output

Algorithm output:

- Super classes S_1, \ldots, S_p ,
- Associated estimands Q_e^1, \ldots, Q_e^p ,
- Proportions w_1, \ldots, w_p .

Practical use:

• Most likely estimand:

$$MLE = \mathscr{E}_{argmax(w_1,...,w_p)},$$

• Weighted mean estimand:

$$WME = \sum_{i=1}^{p} w_i Q_e^i$$

18/04/2023

Practical use of the algorithm output

Algorithm output:

- Super classes S₁,..., S_p,
- Associated estimands Q_e^1, \ldots, Q_e^p ,
- Proportions w_1, \ldots, w_p .

Practical use:

• Most likely estimand:

$$MLE = \mathscr{E}_{argmax(w_1,...,w_p)},$$

Weighted mean estimand:

$$WME = \sum_{i=1}^{p} w_i Q_e^i$$

18/04/2023

< 67 ►

- Searching for equivalence classes for a causal query from an extended summary or a summary graph.
- Characterizing each class of window graphs by the set of parents.
- Introducing the notion of super class.
- Performing some numerical simulations.

< A >

- Searching for equivalence classes for a causal query from an extended summary or a summary graph.
- Characterizing each class of window graphs by the set of parents.
- Introducing the notion of super class.
- Performing some numerical simulations.

- Searching for equivalence classes for a causal query from an extended summary or a summary graph.
- Characterizing each class of window graphs by the set of parents.
- Introducing the notion of super class.
- Performing some numerical simulations.

< A >

- Searching for equivalence classes for a causal query from an extended summary or a summary graph.
- Characterizing each class of window graphs by the set of parents.
- Introducing the notion of super class.
- Performing some numerical simulations.

< A >

Extension to hidden common causes ?

• General Estimation of the equivalence class estimands (non i.i.d data).

Searching for the Optimal characterization of the equivalence classes ?

- Extension to hidden common causes ?
- General Estimation of the equivalence class estimands (non i.i.d data).
- Searching for the Optimal characterization of the equivalence classes ?

< 67 ▶

- Extension to hidden common causes ?
- General Estimation of the equivalence class estimands (non i.i.d data).
- Searching for the Optimal characterization of the equivalence classes ?

< 67 ▶