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Identification in non-temporal causal graphs

Identification in non-temporal causal graphs

Notations:

G : directed acyclic graph (DAG)

V : set of nodes in G

E : set of directed edges in G

p: number of nodes in G

Example: Diamond

V 1

V 2

V 4

V 3

Action: Assign fixed values to a set of
variables (do operator)

Causal query: Causal effect under the
action

Estimand: Distribution of the target without
the operator do

Causal query Estimand Estimation

Question: P(V 4|do(V 2 = v2))?

V 1

v2

V 4

V 3

Answer:
∑
v1

P(V 1 = v1)P(V 4|V 2 = v2,V 1 = v1)

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.
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Identification in non-temporal causal graphs

X= (X1,X2,X3): set of time series
Full-time causal graph

X1
t−2 X1

t−1 X1
t

X2
t−2 X2

t−1 X2
t

X3
t−2 X3

t−1 X3
t

X1
t+1

X2
t+1

X3
t+1

Assumption 1: consistency throughout time
Assumption 2: causal sufficiency
λmax: maximal lag between cause and effect

Window causal graph

X1
t−2 X1

t−1 X1
t

X2
t−2 X2

t−1 X2
t

X3
t−2 X3

t−1 X3
t

C. K. Assaad, E. Devijver, E. Gaussier. Survey and Evaluation of Causal Discovery Methods for Time Series. JAIR, 2022.
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Problem setting

Problem setting

Problem

Given a(n) (extended) summary graph G(e)s , a maximal lag λmax and a causal query Q, find the
estimand of the causal query.

"Several estimands of the same causal query!

Example:

Q =P
(
X3

t = x3
t

∣∣do(X2
t−1 = x2

t−1)
)

λmax = 2

Summary causal graph

X3 X2 X1

Window causal graph 1

X1
t−2 X1

t−1 X1
t

X2
t−2 X2

t−1 X2
t

X3
t−2 X3

t−1 X3
t

Q = ∑
x2

t−2

P(X2
t−2 = x2

t−2)P
(
X3

t = x3
t |X2

t−1 = x2
t−1,x2

t−2

)

Window causal graph 2

X1
t−2 X1

t−1 X1
t

X2
t−2 X2

t−1 X2
t

X3
t−2 X3

t−1 X3
t

Q =P(X3
t = x3

t )
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Equivalence classes

Equivalence classes

Objective

Given a(n) (extended) summary graph Gs (or Ges), a maximal lag λmax and a causal query

Q =P
(
X2

t = x2
t |do(X1

t−µ = x1
t−µ)

)
,

with µ≥ 0, we aim to grouping together all the window graphs giving the same estimand.

Abuse of notation: P(x2
t |do(x1

t−µ)) :=Q.

Definition (Equivalence classes)

Two window graphs Gw1 and Gw2 compatible with Gs (or Ges) are equivalent if the estimands of
Q in Gw1 and Gw2 are the sames.

Technical problem: The estimand is not uniquely defined (many back-door sets).
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Equivalence classes

Equivalence classes

Idea

Each window graph Gw is characterized by the set Paw of X2
t parents in Gw .

Characterization: Each class C is defined by a set of parents PaC . The estimand Qe of Q
associated with C is

Qe = ∑
yC

P(x2
t |x1

t−µ,yC )×P(yC ),

where the sum covers all potential values of yC in PaC .

Open question: What is the "optimal" characterization back-door set ?
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Equivalence classes

Equivalence classes

Example: Consider λmax = 2, µ= 0 and

Extended summary graph
X1

t− X1
t

X3
t− X3

t

X2
t− X2

t

Summary graph
X1

X3

X2

3 classes.

Classes Parent set
C1

{
X1

t−1,X3
t

}
C2

{
X1

t−2,X3
t

}
C3

{
X1

t−2,X1
t−1,X3

t

}
Number of window graphs: 243

21 classes.
Number of window graphs: 453789

Largest class:
{
X1

t−2,X1
t−1,X3

t−2,X3
t−1,X3

t

}
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Equivalence classes

Equivalence classes

Back to the general case: let Ci and Cj be two different classes. Under which condition, we can
have a common estimand in both classes ?

Answer: If for all window graphs Gw in Ci ∪Cj , we have[
PaCi ∪PaCj

]
∩De(X1

t−µ,X2
t )=∅,

where De(·, ·) is the set of common descendants.

Proposition

Let Ges be an extended summary graph and Ci , Cj two different classes. Then, for all Gw in
Ci ∪Cj , we have

Qe = ∑
yCij

P(x2
t |x1

t−µ,yCij )×P(yCij ),

where the sum covers all potential values of yCij in PaCi ∪PaCj .

Idea of the proof: a potential parent of X1
t−µ is a potential descendant of X2

t only if µ= 0. This is
in conflict with the DAG assumption.
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Equivalence classes

Equivalence classes

Proposition

Let Ges be an extended summary graph with a maximal lag λmax. Let Cmax be the largest class
(with the largest cardinal). Then, for all window graph Gw , we have

Qe = ∑
yCmax

P(x2
t |x1

t−µ,yCmax )×P(yCmax ),

where the sum covers all potential values of yCmax in PaCmax .

But...

The same result does not hold for summary graphs!
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Equivalence classes

Equivalence classes

Example: Consider λmax = 2, µ= 0 and

Extended summary graph
X1

t− X1
t

X3
t− X3

t

X2
t− X2

t

Summary graph
X1

X3

X2

Universal estimand:

Qe = ∑
yCmax

P(x2
t |x1

t−µ,yCmax )×P(yCmax ),

where the sum covers all potential values of
yCmax in

{
X1

t−2,X1
t−1,X3

t

}
.

No universal estimand ...
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Equivalence classes

Equivalence classes

No universal estimand for a summary graph.

X1

X3

X2

X1
t−1 X1

t

X3
t−1 X3

t

X2
t−1 X2

t

X1
t−1 X1

t

X3
t−1 X3

t

X2
t−1 X2

t

Summary graph Window graph Gw1 in Ci Window graph Gw2 in Cj

PaCi =
{
X1

t−1,X3
t

}
PaCi =

{
X1

t−1,X3
t−1

}
The set PaCi ∪PaCj =

{
X1

t−1,X3
t−1,X3

t

}
is not a back-door set in Gw2 .

The classes Ci and Cj are not super equivalent.

(EasyVista, UGA) Quarter on Causality, CNAM, Paris 18/04/2023 11 / 19



Equivalence classes

Equivalence classes

Definition (Super equivalence)

Let Gs be a summary graph, two classes Ci and Cj are super equivalent if PaCi ∪PaCj is a valid
back-door set of the query Q over Ci and Cj .

Definition (Super class)

Let Gs be a summary graph, a super class is the maximal set of equivalence classes that are
super equivalent for the causal query Q.

General result. If Ges is an extended summary graph, then there exists a unique super class.
The universal estimand is

Qe = ∑
yC

P(x2
t |x1

t−µ,yC )×P(yC ),

where the sum covers all potential values of yCmax in the largest class.
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Numerical simulations

Numerical simulations

Consider λmax = 2, µ= 0 and

Extended summary graph
X1

t−1 X1
t

X3
t−1 X3

t

X2
t−1 X2

t

Summary graph
X1

X3

X2

Generative model. Given a window causal graph Gw , the time series X i for i ∈ {1,2,3} is
generated using the equations:

X i
t =

∑
X j

t ′∈PaGw (X i
t )

αij X
j
t ′ +0.1ξi

t ,

where ξi
t ∼N(0,1) and αij in [0.2,1] (randomly chosen).

We aim to estimate the expectation E[X2
t |do(X1

t = x1
t )] for a given window graph Gw .
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Numerical simulations

Numerical simulations

We show that
E[X2

t |do(X1
t = x1

t )]=α21x1
t .

We estimate α21 using a linear regression.

Extended summary graph. Consider the classes C1, C4 and C9 with

PaC1 =
{
X1

t ,X1
t−1,X3

t−1

}
,PaC4 =

{
X1

t ,X1
t−2,X3

t−2

}
PaC9 =

{
X1

t ,X1
t−1,X3

t−1,X1
t−2,X3

t−2

}
The estimation is performed by generating a 100 points for each time series.
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Numerical simulations

Numerical simulations

MAE: Mean Absolute Error.

Figure: Estimation boxplots over each class.
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Numerical simulations

Numerical simulations

Summary graph. Two super classes S1 and S2.

S1 :
{
X1

t ,X1
t−1,X3

t−1,X1
t−2,X3

t−2

}
S2 :

{
X1

t ,X3
t ,X1

t−1,X3
t−1,X1

t−2,X3
t−2

}

Figure: Estimation boxplots over each super class.
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Practical use of the algorithm output

Practical use of the algorithm output

Algorithm output:
Super classes S1, . . . ,Sp ,

Associated estimands Q1
e , . . . ,Qp

e ,

Proportions w1, . . . ,wp .

Practical use:
Most likely estimand:

MLE = Eargmax(w1 ,...,wp),

Weighted mean estimand:

WME =
p∑

i=1
wi Q

i
e .
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Conclusion and Prospect

Conclusion and Prospect

Searching for equivalence classes for a causal query from an extended summary or a
summary graph.

Characterizing each class of window graphs by the set of parents.

Introducing the notion of super class.

Performing some numerical simulations.
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Conclusion and Prospect

Conclusion and Prospect

Extension to hidden common causes ?
General Estimation of the equivalence class estimands (non i.i.d data).

Searching for the Optimal characterization of the equivalence classes ?
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