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Motivation



There was “a lot of correlation”

TIONSHIP BETWEEN HUMAN SMOKING
ND DEATH RATES
-UP STUDY OF 187,766 MEN

D.; Daniel Horn, Ph.D.

Prs, 56 were heavy smokers
. 23.9% other cancer patients
5t (all 36 who died of lung



Unobserved confounding
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Image credit (from Noun Project):
priyanka, Andrew Nielsen, mungang kim



Naive ML approach fails




How do we estimate causal effects from
observational data?



Some of the ways

If there is a treatment effect, there will be a...
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Difference-in-Differences
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Image credits:
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Structural assumptions

A known causal graph (DAG) with hidden confounding.

The method applies to general graphs
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We focus on the Instrument Variable (IV) setting



IV: Identifiability

7N (a) Zinfluences X
(b) Zisindependent of U Z1lU
(c) ZonlyinfluencesYviaX Z11LY|{X, U}

assume: Y = f(X)+ey with Eley]=0

[ le]:E X)+ey|z] =E[f(X)|z] = jf xlzdx

identifiable identifiable




Even in the IV setting, conditions for
identifiability are still (too?) strong
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A zoo of point identifia
But less work on partig
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The story so far.
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Binary variables, |
Finite variables, g
Discrete variables
Scalar variables |
High-dimensional



Problem formulation



General problem formulation

/ S Assumptions \

(a) Zinfluences X Z X
(b) Zisindependent of U /Z 11U
(c) Zonlyinfluences Y via X Z 1L Y|{X, U}

X=g(Z,U) Y=f(X,U)

™ / /

~

Goal - partial identification
For any x” compute lower and upper bounds on the causal effect

E[Y |do(x™)]




General problem formulation as optimization

e optimize over “all” distributions

/ \

X=oZ,U) Y=f(XU)

Goal
among all possible {g, 7} and distributions over U
that reproduce the observed densities {p(y | x, z), p(x | 2)},
estimate the min and max expected outcomes under intervention




A causal mathematical program

Lower Causal Upper
Sl < <

/\min /max o(S)

16 Wy
subject to , dist(ps,p) < €,

/ / structural constraints.,\
/




Cannot have no restrictions on f and g

Without any restrictions on functions and distributions:

effect is not identifiable and average treatment effect bounds are vacuous
[Pearl, 1995; Bonet, 2001; Gunsilius 2018]

Mild assumptions suffice for meaningful bounds:
f and g have a finite number of discontinuities [Gunsilius, 2019]

Rest of the talk: operationalize the optimization
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Our practical approach



Response functions |

e F[Each value of U fixes a functional relation X —» Y
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e Collect the set of all resulting functions {f }

e Identify values of u that result in the same f and assign a
unique index r

|

ultimately, we care about this
functional relation

Y = f(X, U) = /\1X + /\2XU1 + U2
f(x,u)=A1x+Ax for u;=1,u,=0
fr(x)=(A1 + A,)x where ris an alias for (1,0)

— Instead of a potentially multivariate distribution over confounders U directly,
we can think of a distribution R over functions f: X — Y



Response functions |
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find convenient
representation of U from
which we can sample

find convenient representation of
distributions over response functions

“Let‘f’s get to work.”



Parameterizing response functions

We choose a simple parameterization
fr(x):=fo,(x) for 6e€®C RK

For simplicity, work with linear combination of (non-linear) basis functions:

K
fo(z) = Z O (x) for basis functions {1y : R? — R}kE[K]
k=1

~
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Parameterizing the distribution over 6

implies a causal model, and a distribution pm (=, y, 2)

pm(0)

Goal
Optimize over distributions p.(6) such that

pm(x,y, 2) is close to the observed distribution p(z,y, 2)

~

again, assume parametric form of p(0)

py(0) with qERd



The parametrization in practice

This graph only represents standard
N * N _» U probabilistic markov conditions. The Ns
Z~' X Y are not to be interpreted causally, but

as noise sources to be transformed.

6 ‘ Nx ~ DPn ( s Hmg (NX)vzm (NX))

The distribution is defined up to mean and covariance functions.

Optimization Parameters:n) = (770, 771)
tn, and X, are small neural nets



A causal mathematical program

16 Wy

/ min/ max o(S)

subject to  dist(ps,p) < €,

structural constraints,

Objective: ATE [obj]

Optimising causal effect, e.g. ATE

Estimating E[Y|do(x*)]



Objective function

d
OneO2 O

objective
mﬁin/max E[Y |do(x*)] = min/maxjfg(x*)pﬁ(G)dQ
N 1 1

= Yy (x*)T ENX [:u’no (NX)]




A causal mathematical program

min/ max o(S)
16 ,Wo)

subject to , dist(ps,p) < €

r— )
/ structural constraints,

[

Constraint: Data [c-data]
Matching the observed data distribution

Matching p(x | z) and p(y | X, z)



Match p(x | z)

|dentified from data and manually fixed once up front.
Implemented as an invertible conditional normalizing flow.

T — (008

Note: Given x;,z;, we can uniquely determine n; = hz_l(xz)



Match p(y | X, z)

Match the first two moments at a representative, finite set of points from p(x, z)

For the IV, the constraints are then in closed form. J € {17 Areroos D}

E[fo(z;) | x5, 25] = ¥(x5) " pn, (n5) A random subsample from the data
’ (The ‘stochastic’ in stochastic causal

programming)

E(f§(x;) | x5, 2] =
W(@5) " o (15) (S () + o (0, (15)) ()



A causal mathematical program

min/ max o(S)
16 ,Wo)

subject to  dist(ps,p) < €,

structural constraints,

N

Constraint: Structure [c-struct]

Graphical assumptions

Baked into the model



Intermediate overview

x = h,(n) }/I

fix once @—»M
up front
p(y |z, z explicit constraint
T~ a0

Az,i(n)
jef{1,2,...,D}

objective

min/max E[Y |do(x*)]
n n



The final optimization problem

Lower Causal Upper
o <@ <

/\min /max o(S)

16 Wy
subject to , dist(ps,p) < €, Constraints enforced using
/ structural constraints, the augmented Lagrangian

/ \ (Nocedal and Wright, 2006)

Objective: [obj] Constraint: Data [c-data] Constraint: Structure [c-struct]

ATE Matching the observed data distribution Graphical assumptions

Yy (z) " Eny [tne (Nx)] (= ha(n) (precompute {n;};eip)) |

[LHSJ'J =E[pu(Y) | 25, ZJ']] Baked into the model
RHS;1(n) = A

[LHSj,z = RHSj,l<n>]

VI € [2] and j € [D]




Empirical results



Choices of response functions

K
fo(z) = Z 0 x () for basis functions {5, : R — R}icix
k=1

~

4 Neural network
[ Polynomials J Train a small fully connected
network on observed data X—Y
and take activations of last
Khldden layer as basis funcUons./

For visualization: All interventions are along a single axis for multi-dimensional treatments



Outcome

Density
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Linear 2-D treatment,
strong confounding
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Linear 2-D treatment,
weak confounding
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Hu, Y., Wu, Y., Zhang, L., & Wu, X. (2021, May). A generative adversarial framework for bounding confounded causal effects. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 35, No. 13, pp. 12104-12112).
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Takeaways

e Partial identification is hard for continuous high-dimensional variables.
e We were able to craft a framework that is
o flexible
o needs minimal Monte-Carlo estimations in the |V and leaky mediator settings

o allows the user the choice of a spectrum of assumption strength

See the paper for extensions to more general settings.



Quadratic 3-D treatment, Quadratic 2-D treatment, Quadratic scalar treatment,

weak confounding weak confounding weak confounding
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Thank you



