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Motivation



There was “a lot of correlation”

“the most reasonable 
interpretation [...] is 

direct cause and effect.”

● 3 out of 86 cancer patients were non-smokers, 56 were heavy smokers
● 14.6% lung cancer patients non-smokers vs. 23.9% other cancer patients
● survey 30,000 doctors and see who dies first (all 36 who died of lung 

cancer were smokers)
● much more evidence

wait a sec!



Unobserved confounding

Image credit (from Noun Project):
priyanka, Andrew Nielsen, mungang kim

treatment outcome

confounder



Naive ML approach fails

Image credit: 
Niki Kilbertus



How do we estimate causal effects from 
observational data?



Some of the ways

Image credits:
1 https://statistikakademin.se, 2 Brady Neal, 3 William M.K. Trochim, 4 Fabian Dablander  

Covariate matching
1

Difference-in-differences
2

Regression discontinuity 
3

   Structural assumptions
4

We are here!



Structural assumptions

A known causal graph (DAG) with hidden confounding.

The method applies to general graphs

We focus on the Instrument Variable (IV) setting 



IV: Identifiability (through additive noise)

(a) Z influences X
(b) Z is independent of U
(c) Z only influences Y via X

treatment
instrument outcome

unobserved 
confounding

assume:

identifiable identifiableunique under 
mild conditions



Even in the IV setting, conditions for 
identifiability are still (too?) strong



But not for partial identifiability

Point identifiability Partial identifiability

Additive Noise
f and g have a finite number of 
discontinuities [Gunsilius, 2019]

Or

Monotonicity

and others…

g

g
f

f

Assumptions for the identification of                    in the IV setting



The story so far
● A zoo of point identifiability conditions for IVs, starting 1930s.
● But less work on partial identifiability until recently.

○ Binary variables, IV setting [Balke and Pearl, 1994]
○ Finite variables, general graphs [Zhang et al, 2021]
○ Discrete variables, general graphs [Duarte et al, 2021]
○ Scalar variables [Kilbertus, Kusner and Silva, 2021]
○ High-dimensional variables [This work, and others]



Problem formulation



Assumptions

General problem formulation

(a) Z influences X

(b) Z is independent of U

(c) Z only influences Y via X

treatment
instrument outcome

unobserved 
confounding

non-linear, non-additive

Goal - partial identification
For any x* compute lower and upper bounds on the causal effect

 



General problem formulation as optimization

treatment
instrument outcome

unobserved 
confounding

g

g
f

f

Goal
among all possible {g, f} and distributions over U

that reproduce the observed densities {p(y | x, z), p(x | z)},
estimate the min and max expected outcomes under intervention

optimize over “all” functions

optimize over “all” distributions



A causal mathematical program

Objective: ATE [obj]
Optimising causal effect, e.g. ATE

Constraint: Data [c-data]
Matching the observed data distribution

Constraint: Structure [c-struct]
Graphical assumptions

Causal estimand of interest Matching the observed data 
to the implied data

The conditional independencies

Upper 
bound

Lower 
bound

Causal 
Effect< <



Cannot have no restrictions on f and g

g

g
f

f

● Without any restrictions on functions and distributions:
effect is not identifiable and average treatment effect bounds are vacuous
[Pearl, 1995; Bonet, 2001; Gunsilius 2018]

● Mild assumptions suffice for meaningful bounds:
f and g have a finite number of discontinuities [Gunsilius, 2019]

● Rest of the talk: operationalize the optimization



Our practical approach



Response functions I [Balke & Pearl, 1994]

g

g
f

f

ultimately, we care about this 
functional relation 

● Each value of U fixes a functional relation X → Y

● Collect the set of all resulting functions {fu}

● Identify values of u that result in the same fu and assign a 
unique index r

→ Instead of a potentially multivariate distribution over confounders U directly,
we can think of a distribution R over functions f: X → Y



Response functions II

g

g
f

f fR

choose convenient
function spaces

find convenient 
representation of U from 

which we can sample

find convenient representation of 
distributions over response functions



Parameterizing response functions

We choose a simple parameterization 

polynomials

neural networks

…

For simplicity, work with linear combination of (non-linear) basis functions:



Parameterizing the distribution over 𝜃

implies a causal model, and a distribution

again, assume parametric form of
Ideally

low variance Monte-Carlo 
gradient estimation

differentiable sampling

Goal
Optimize over distributions            such that



The parametrization in practice

This graph only represents standard 
probabilistic markov conditions. The Ns 
are not to be interpreted causally, but 
as noise sources to be transformed.

Optimization Parameters:
                          are small neural nets 

The distribution is defined up to mean and covariance functions.



A causal mathematical program

Objective: ATE [obj]
Optimising causal effect, e.g. ATE

Constraint: Data [c-data]
Matching the observed data distribution

Constraint: Structure [c-struct]
Graphical assumptions

           
           Estimating Matching p(x | z) and p(y | x, z) Baked into the model



Objective function

objective



A causal mathematical program

Objective: ATE [obj]
Optimising causal effect, e.g. ATE

Constraint: Data [c-data]
Matching the observed data distribution

Constraint: Structure [c-struct]
Graphical assumptions

           
           Estimating Matching p(x | z) and p(y | x, z) Baked into the model



Match p(x | z) 

Identified from data and manually fixed once up front. 
Implemented as an invertible conditional normalizing flow.



Match p(y | x, z) 

Match the first two moments at a representative, finite set of points from p(x, z)

For the IV, the constraints are then in closed form.

A random subsample from the data
(The ‘stochastic’ in stochastic causal 
programming)



A causal mathematical program

Objective: ATE [obj]
Optimising causal effect, e.g. ATE

Constraint: Data [c-data]
Matching the observed data distribution

Constraint: Structure [c-struct]
Graphical assumptions

           
           Estimating Matching p(x | z) and p(y | x, z) Baked into the model



Intermediate overview

objective

fix once 
up front

explicit constraint



Objective: [obj]
ATE

Constraint: Data [c-data]
Matching the observed data distribution

Constraint: Structure [c-struct]
Graphical assumptions

Baked into the model

The final optimization problem
Upper 
bound

Lower 
bound

Causal 
Effect< <

Precompute once 
up front from data

The final values

Constraints enforced using 
the augmented Lagrangian 
(Nocedal and Wright, 2006)

}



Empirical results



Choices of response functions

Polynomials
Neural network

Train a small fully connected 
network on observed data X→Y 

and take activations of last 
hidden layer as basis functions.

For visualization: All interventions are along a single axis for multi-dimensional treatments



Linear 2-D treatment,
 strong confounding

Linear 2-D treatment,
 weak confounding

Single constraint [c-data]

Stronger assumptions, stronger inferenceOurs seems more stable

Hu, Y., Wu, Y., Zhang, L., & Wu, X. (2021, May). A generative adversarial framework for bounding confounded causal effects. In Proceedings of the AAAI 
Conference on Artificial Intelligence (Vol. 35, No. 13, pp. 12104-12112).



Takeaways

● Partial identification is hard for continuous high-dimensional variables.

● We were able to craft a framework that is 

○ flexible 

○ needs minimal Monte-Carlo estimations in the IV and leaky mediator settings 

○ allows the user the choice of a spectrum of assumption strength

See the paper for extensions to more general settings.



Quadratic 3-D treatment,
 weak confounding

Quadratic 2-D treatment,
 weak confounding

Quadratic scalar treatment,
 weak confounding



Thank you


