Stochastic Causal Programming for Bounding Treatment Effects

https://arxiv.org/pdf/2202.10806.pdf

joint work with Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, Niki Kilbertus

Kirtan Padh HELMHOLTZAI

Motivation

There was "a lot of correlation"

TIONSHIP BETWEEN HUMAN SMOKING ND DEATH RATES V-UP STUDY OF 187,766 MEN

D.; Daniel Horn, Ph.D.

ers, 56 were heavy smokers . 23.9% other cancer patients st (all 36 who died of lung

Unobserved confounding

Naive ML approach fails

Image credit: Niki Kilbertus

How do we estimate causal effects from observational data?

Some of the ways

1 https://statistikakademin.se, 2 Brady Neal, 3 William M.K. Trochim, 4 Fabian Dablander

Structural assumptions

A known causal graph (DAG) with hidden confounding.

The method applies to general graphs

We focus on the Instrument Variable (IV) setting

IV: Identifiability (through additive noise)

ssume:
$$Y = f(X) + e_Y$$
 with $\mathbb{E}[e_Y] = 0$

$$\mathbb{E}[Y|z] = \mathbb{E}[f(X) + e_Y|z] = \mathbb{E}[f(X)|z] = \int f(x)p(x|z)dx$$

identifiable
identifiable
identifiable
identifiable

Even in the IV setting, conditions for identifiability are still (too?) strong

The story so far

- A zoo of point identifia
- But less work on partia
 - Binary variables, l'
 - Finite variables, g
 - Discrete variables
 - Scalar variables [+ 1995-2015
 - High-dimensional

Problem formulation

General problem formulation

Goal - partial identification

For any x^{*} compute lower and upper bounds on the causal effect

 $\mathbb{E}[Y|do(x^{\star})]$

General problem formulation as optimization

Goal

among all possible $\{g, f\}$ and distributions over Uthat reproduce the observed densities $\{p(y | x, z), p(x | z)\}$, estimate the min and max expected outcomes under intervention

A causal mathematical program

Cannot have no restrictions on f and g

- Without any restrictions on functions and distributions: effect is not identifiable and average treatment effect bounds are vacuous [Pearl, 1995; Bonet, 2001; Gunsilius 2018]
- Mild assumptions suffice for meaningful bounds: *f* and *g* have a finite number of discontinuities [Gunsilius, 2019]
- Rest of the talk: **operationalize the optimization**

Our practical approach

Response functions | [Balke & Pearl, 1994]

- Each value of U fixes a functional relation $X \rightarrow Y$
- Collect the set of all resulting functions $\{f_{u}\}$

Identify values of u that result in the same f_u and assign a unique index r

$$Y = f(X, U) = \lambda_1 X + \lambda_2 X U_1 + U_2$$

$$f(x, u) = \lambda_1 x + \lambda_2 x \quad \text{for} \quad u_1 = 1, u_2 = 0$$

$$f_r(x) = (\lambda_1 + \lambda_2) x \quad \text{where} \quad r \text{ is an alias for } (1, 0)$$

 \rightarrow Instead of a potentially multivariate distribution over confounders U directly, we can think of a distribution R over functions f: X \rightarrow Y

Response functions II

choose convenient function spaces find convenient representation of U from which we can sample

find convenient representation of distributions over response functions

Parameterizing response functions

We choose a simple parameterization $f_r(x) := f_{\theta_r}(x)$ for $\theta \in \Theta \subset \mathbb{R}^K$

For simplicity, work with linear combination of (non-linear) basis functions: $f_{\theta}(x) = \sum \theta_k \psi_k(x)$ for basis functions $\{\psi_k : \mathbb{R}^p \to \mathbb{R}\}_{k \in [K]}$ polynomials neural networks $f_{\theta}: X \to Y$

Parameterizing the distribution over θ

Goal

Optimize over distributions $p_{\mathcal{M}}(\theta)$ such that

 $\hat{p}_{\mathcal{M}}(x, y, z)$ is close to the observed distribution p(x, y, z)

Ideally	again, assum	ne parar	netric form	of $p_{\mathcal{M}}(heta)$
low variance Monte-Carlo gradient estimation	$p_{\eta}(\theta)$	with	$\eta \in \mathbb{R}^d$	\wedge
differentiable sampling	<u> </u>			

The parametrization in practice

This graph only represents standard probabilistic markov conditions. The Ns are **not to be interpreted causally**, but as noise sources to be transformed.

$$\boldsymbol{\theta} \mid N_X \sim p_{\eta} \left(\cdot \; ; \; \mu_{\eta_0} \left(N_X \right), \Sigma_{\eta_1} \left(N_X \right) \right)$$

The distribution is defined up to mean and covariance functions.

Optimization Parameters: $\eta = (\eta_0, \eta_1)$ μ_{η_0} and Σ_{η_1} are small neural nets

A causal mathematical program

Objective function

objective

$$\min_{\eta} \max_{\eta} \mathbb{E}[Y | do(x^{\star})] = \min_{\eta} \max_{\eta} \int f_{\theta}(x^{\star}) p_{\eta}(\theta) d\theta$$

$$= \psi_{Y}(x^{\star})^{\top} \mathbb{E}_{N_{X}}[\mu_{\eta_{0}}(N_{X})]$$

A causal mathematical program

Match p(x | z)

Identified from data and manually fixed once up front. Implemented as an invertible **conditional normalizing flow**.

$$x = h_z(n)$$

Note: Given x_i, z_i , we can uniquely determine $n_i = h_{z_i}^{-1}(x_i)$

Match p(y | x, z)

Match the first two moments at a representative, finite set of points from p(x, z)

For the IV, the constraints are then in closed form.

 $\mathbb{E}[f_{\theta}(x_j) \mid x_j, z_j] = \psi(x_j)^{\top} \mu_{\eta_0}(n_j)$

 $j \in \{1, 2, \dots, D\}$

A random subsample from the data (The 'stochastic' in stochastic causal programming)

A causal mathematical program

Intermediate overview

objective $\min_{\eta} / \max_{\eta} \mathbb{E}[Y | do(x^{\star})]$

The final optimization problem

Empirical results

Choices of response functions

$$f_{\theta}(x) = \sum_{k=1}^{K} \theta_k \psi_k(x) \text{ for basis functions } \{\psi_k : \mathbb{R}^p \to \mathbb{R}\}_{k \in [K]}$$

Polynomials

Neural network

Train a small fully connected network on observed data $X \rightarrow Y$ and take activations of last hidden layer as basis functions.

For visualization: All interventions are along a single axis for multi-dimensional treatments

Stronger assumptions, stronger inference

Single constraint [c-data]

Takeaways

- Partial identification is hard for continuous high-dimensional variables.
- We were able to craft a framework that is
 - \circ flexible
 - needs minimal Monte-Carlo estimations in the IV and leaky mediator settings
 - allows the user the choice of a **spectrum of assumption strength**

See the paper for extensions to more general settings.

