Stochastic Causal Programming for Bounding Treatment Effects

https://arxiv.org/pdf/2202.10806.pdf

joint work with
Jakob Zeitler, David Watson, Matt Kusner, Ricardo Silva, Niki Kilbertus

Motivation

There was "a lot of correlation"

Unobserved confounding

Naive ML approach fails

How do we estimate causal effects from observational data?

Some of the ways

Structural assumptions

A known causal graph (DAG) with hidden confounding.

The method applies to general graphs

We focus on the Instrument Variable (IV) setting

IV: Identifiability (through additive noise)

(a) Z influences $X \quad Z \not \Perp X$
(b) Z is independent of $U \quad Z \Perp U$
(c) Z only influences Y via $X \quad Z \Perp Y \mid\{X, U\}$
assume: $Y=f(X)+e_{Y} \quad$ with $\quad \mathbb{E}\left[e_{Y}\right]=0$
$\mathbb{E}[Y \mid z]=\mathbb{E}\left[f(X)+e_{Y} \mid z\right]=\mathbb{E}[f(X) \mid z]=\int f(x) p(x \mid z) d x$
identifiable
identifiable

Even in the IV setting, conditions for identifiability are still (too?) strong

The story so far

- A zoo of point identifia
- But less work on partia - Binary variables,
- Finite variables, g
- Discrete variables
- Scalar variables [1 1995-2015
- High-dimensional

Problem formulation

General problem formulation

Assumptions

(a) Z influences X
(b) Z is independent of U
(c) Z only influences Y via X
$X=g(Z, U) \quad Y=f(X, U)$
non-linear, non-additive

Goal - partial identification

For any x^{*} compute lower and upper bounds on the causal effect

$$
\mathbb{E}\left[Y \mid d o\left(x^{\star}\right)\right]
$$

General problem formulation as optimization

optimize over "all" distributions

Goal

among all possible $\{g, f\}$ and distributions over U that reproduce the observed densities $\{p(y \mid x, z), p(x \mid z)\}$, estimate the min and max expected outcomes under intervention

A causal mathematical program

Cannot have no restrictions on f and g

- Without any restrictions on functions and distributions:
effect is not identifiable and average treatment effect bounds are vacuous [Pearl, 1995; Bonet, 2001; Gunsilius 2018]
- Mild assumptions suffice for meaningful bounds:
f and g have a finite number of discontinuities [Gunsilius, 2019]
- Rest of the talk: operationalize the optimization

Our practical approach

Response functions I [Bake \& Pearl, 1994]

- Each value of U fixes a functional relation $X \rightarrow Y$
- Collect the set of all resulting functions $\left\{f_{u}\right\}$
- Identify values of u that result in the same f_{u} and assign a unique index r

$$
\begin{gathered}
Y=f(X, U)=\lambda_{1} X+\lambda_{2} X U_{1}+U_{2} \\
f(x, u)=\lambda_{1} x+\lambda_{2} x \quad \text { for } \quad u_{1}=1, u_{2}=0 \\
f_{r}(x)=\left(\lambda_{1}+\lambda_{2}\right) x \quad \text { where } r \text { is an alias for }(1,0)
\end{gathered}
$$

\rightarrow Instead of a potentially multivariate distribution over confounders U directly, we can think of a distribution R over functions $f: X \rightarrow Y$

Response functions II

choose convenient
function spaces
find convenient representation of U from
which we can sample
find convenient representation of distributions over response functions

Parameterizing response functions

We choose a simple parameterization

$$
f_{r}(x):=f_{\theta_{r}}(x) \quad \text { for } \quad \theta \in \Theta \subset \mathbb{R}^{K}
$$

For simplicity, work with linear combination of (non-linear) basis functions:

$$
f_{\theta}(x)=\sum_{k=1}^{K} \theta_{k} \psi_{k}(x) \text { for basis functions }\left\{\psi_{k}: \mathbb{R}^{p} \rightarrow \mathbb{R}\right\}_{k \in[K]}
$$

polynomials
neural networks

$$
f_{\theta}: X \rightarrow Y
$$

Parameterizing the distribution over θ

implies a causal model, and a distribution $\hat{p}_{\mathcal{M}}(x, y, z)$

Goal

Optimize over distributions $p_{\mathcal{M}}(\theta)$ such that

$$
\hat{p}_{\mathcal{M}}(x, y, z) \text { is close to the observed distribution } p(x, y, z)
$$

Ideally
low variance Monte-Carlo gradient estimation
again, assume parametric form of $p_{\mathcal{M}}(\theta)$

$$
p_{\eta}(\theta) \quad \text { with } \quad \eta \in \mathbb{R}^{d}
$$

The parametrization in practice

$\boldsymbol{\theta} \mid N_{X} \sim p_{\eta}\left(\cdot ; \mu_{\eta_{0}}\left(N_{X}\right), \Sigma_{\eta_{1}}\left(N_{X}\right)\right)$

The distribution is defined up to mean and covariance functions.
Optimization Parameters: $\eta=\left(\eta_{0}, \eta_{1}\right)$
$\mu_{\eta_{0}}$ and $\Sigma_{\eta_{1}}$ are small neural nets

A causal mathematical program

Objective function

$$
\begin{aligned}
\min _{\eta} / \max _{\eta} \mathbb{E}\left[Y \mid \text { do } o\left(x^{\star}\right)\right] & =\min _{\eta} / \max _{\eta} \int f_{\theta}\left(x^{\star}\right) p_{\eta}(\theta) d \theta \\
& =\psi_{Y}\left(x^{\star}\right)^{\top} \mathbb{E}_{N_{X}}\left[\mu_{\eta_{0}}\left(N_{X}\right)\right]
\end{aligned}
$$

A causal mathematical program

Objective: ATE [obj]

Estimating $\mathbb{E}\left[Y \mid d o\left(x^{*}\right)\right]$

Constraint: Data [c-data]
Matching the observed data distribution

Matching $p(x \mid z)$ and $p(y \mid x, z)$

Constraint: Structure [c-struct]

Match $p(x \mid z)$

Identified from data and manually fixed once up front. Implemented as an invertible conditional normalizing flow.

$$
x=h_{z}(n)
$$

Note: Given x_{i}, z_{i}, we can uniquely determine $n_{i}=h_{z_{i}}^{-1}\left(x_{i}\right)$

Match p(y|x, z)

Match the first two moments at a representative, finite set of points from $p(x, z)$

For the IV, the constraints are then in closed form.
$\mathbb{E}\left[f_{\theta}\left(x_{j}\right) \mid x_{j}, z_{j}\right]=\psi\left(x_{j}\right)^{\top} \mu_{\eta_{0}}\left(n_{j}\right)$
$\mathbb{E}\left[f_{\theta}^{2}\left(x_{j}\right) \mid x_{j}, z_{j}\right]=$
$\psi\left(x_{j}\right)^{\top} \mu_{\eta_{0}}\left(n_{j}\right)\left(\Sigma_{\eta_{1}}\left(n_{j}\right)+\mu_{\eta_{0}}\left(n_{j}\right) \mu_{\eta_{0}}^{\top}\left(n_{j}\right)\right) \psi\left(x_{j}\right)$

$$
j \in\{1,2, \ldots, D\}
$$

A random subsample from the data (The 'stochastic' in stochastic causal programming)

A causal mathematical program

Intermediate overview

objective
$\min _{\eta} / \max _{\eta} \mathbb{E}\left[Y \mid d o\left(x^{\star}\right)\right]$

The final optimization problem

Empirical results

Choices of response functions

$$
f_{\theta}(x)=\sum_{k=1}^{K} \theta_{k} \psi_{k}(x) \text { for basis functions }\left\{\psi_{k}: \mathbb{R}^{p} \rightarrow \mathbb{R}\right\}_{k \in[K]}
$$

Polynomials

Neural network

Train a small fully connected network on observed data $X \rightarrow Y$ and take activations of last hidden layer as basis functions.

For visualization: All interventions are along a single axis for multi-dimensional treatments

Linear 2-D treatment, strong confounding

Ours seems more stable

Stronger assumptions, stronger inference

Linear 2-D treatment, weak confounding

Single constraint [c-data]

Takeaways

- Partial identification is hard for continuous high-dimensional variables.
- We were able to craft a framework that is
- flexible
- needs minimal Monte-Carlo estimations in the IV and leaky mediator settings
- allows the user the choice of a spectrum of assumption strength

See the paper for extensions to more general settings.

Quadratic 3-D treatment, weak confounding

Quadratic 2-D treatment, weak confounding

Quadratic scalar treatment, weak confounding

Thank you

