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Probability Theory

• Probability theory is a mathematisation of the concept of randomness
(or stochasticity).

• There is a universally accepted axiomatisation1 of probability theory
based on measure theory.

• A probability space is a triple (Ω,H,P), where:
(i) Ω is a set of outcomes;
(ii) H is a collection of events forming a σ-algebra, i.e. a non-empty collection

of subsets of Ω such that
• Ω ∈ H;
• if A ∈ H, then Ω \ A ∈ H;
• if A1,A2, ... ∈ H, then ∪nAn ∈ H;

(iii) P is a probability measure on (Ω,H), i.e. a function P : H → [0, 1]
satisfying

• P(∅) = 0;
• P(∪nAn) =

∑
n P(An) for any disjoint sequence (An) in H;

• P(Ω) = 1.

1Foundations of the Theory of Probability, Andrei N Kolmogorov, 1933
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Probability Theory
Dice Roll

Example
• Outcomes: Ω = {1,2,3,4,5,6}.

• “Probability of rolling a one”:

P({1}) = 1
6
.

• “Probability of rolling an even number”:

P({2,4,6}) = 1
2
.
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Probability vs Statistics

Data
Generating

Process
Data

Probability Theory

Statistics

Figure: Statistics is an inverse problem of probability theory.

Causal Data
Generating

Process
Data

Causality

Causal Inference

Figure: Causal inference is an inverse problem of causality.

Probability theory is not rich enough to capture causal concepts. But it
may give us hints about how to axiomatise the concept of “causality”,
which is our goal.
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Pearl’s Ladder of Causation

1The Book of Why: The New Science of Cause and Effect, Pearl and MacKenzie, 2018
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Pearl’s Ladder of Causation

Counter-
factuals

Interventional
Causality

Probability
Theory

Intervention

Association X Y

X Y

X Y

UX UY

(Ω,H,P)

?

Figure: Primitive objects in each rung of the ladder.
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Manipulation is at the heart of Causality

“Descriptive knowledge, by contrast, is knowledge that, although it may
provide a basis for prediction, classification, or more or less unified
representation or systemisation, does not provide information potentially
relevant to manipulation. It is in this that the fundamental contrast
between causal explanation and description consists. On this way of
looking at matters, our interest in causal relationships and explanation
initially grows out of a highly practical interest human beings have in
manipulation and control; it is then extended to contexts in which
manipulation is no longer a practical possibility2.”

We are interested in what happens to the system, when we intervene on a
sub-system.

2Making Things Happen: A Theory of Causal Explanation, Woodward, 2005
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Causal Spaces
Definition
A causal space is defined as the quadruple (Ω,H,P,K), where
(Ω,H,P) = (×t∈T Et ,⊗t∈TEt ,P) is a (product) probability space and
K = {KS : S ∈ P(T )}, called the causal mechanism, is a collection of
transition probability kernels KS from (Ω,HS) into (Ω,H), called the causal
kernel on HS , such that

(i) for all A ∈ H and ω ∈ Ω,

K∅(ω,A) = P(A);

(ii) for all A ∈ HS and B ∈ H,

KS(ω,A ∩ B) = 1A(ω)KS(ω,B).

• P is the “observational distribution”.
• Causal kernels KS encode the causal information.
• For each ω ∈ Ω, KS(ω, ·) is a probability measure on (Ω,H).

Junhyung Park et al. Axiomatisation of Causality 17th April, 2023 11 / 23



Causal Spaces
Definition
A causal space is defined as the quadruple (Ω,H,P,K), where
(Ω,H,P) = (×t∈T Et ,⊗t∈TEt ,P) is a (product) probability space and
K = {KS : S ∈ P(T )}, called the causal mechanism, is a collection of
transition probability kernels KS from (Ω,HS) into (Ω,H), called the causal
kernel on HS , such that

(i) for all A ∈ H and ω ∈ Ω,

K∅(ω,A) = P(A);

(ii) for all A ∈ HS and B ∈ H,

KS(ω,A ∩ B) = 1A(ω)KS(ω,B).

• P is the “observational distribution”.

• Causal kernels KS encode the causal information.
• For each ω ∈ Ω, KS(ω, ·) is a probability measure on (Ω,H).

Junhyung Park et al. Axiomatisation of Causality 17th April, 2023 11 / 23



Causal Spaces
Definition
A causal space is defined as the quadruple (Ω,H,P,K), where
(Ω,H,P) = (×t∈T Et ,⊗t∈TEt ,P) is a (product) probability space and
K = {KS : S ∈ P(T )}, called the causal mechanism, is a collection of
transition probability kernels KS from (Ω,HS) into (Ω,H), called the causal
kernel on HS , such that

(i) for all A ∈ H and ω ∈ Ω,

K∅(ω,A) = P(A);

(ii) for all A ∈ HS and B ∈ H,

KS(ω,A ∩ B) = 1A(ω)KS(ω,B).

• P is the “observational distribution”.
• Causal kernels KS encode the causal information.

• For each ω ∈ Ω, KS(ω, ·) is a probability measure on (Ω,H).

Junhyung Park et al. Axiomatisation of Causality 17th April, 2023 11 / 23



Causal Spaces
Definition
A causal space is defined as the quadruple (Ω,H,P,K), where
(Ω,H,P) = (×t∈T Et ,⊗t∈TEt ,P) is a (product) probability space and
K = {KS : S ∈ P(T )}, called the causal mechanism, is a collection of
transition probability kernels KS from (Ω,HS) into (Ω,H), called the causal
kernel on HS , such that

(i) for all A ∈ H and ω ∈ Ω,

K∅(ω,A) = P(A);

(ii) for all A ∈ HS and B ∈ H,

KS(ω,A ∩ B) = 1A(ω)KS(ω,B).

• P is the “observational distribution”.
• Causal kernels KS encode the causal information.
• For each ω ∈ Ω, KS(ω, ·) is a probability measure on (Ω,H).

Junhyung Park et al. Axiomatisation of Causality 17th April, 2023 11 / 23



Table of Contents

1 Motivation

2 Causal Spaces

3 Examples & Comparisons with SCMs

Junhyung Park et al. Axiomatisation of Causality 17th April, 2023 12 / 23



Ice Cream Sales and Fatal Rip Current Accidents

• We take (Eice × Eacc,Eice ⊗ Eacc,P,K), where Eice = Eacc = R is the set
of real numbers, Eice = Eacc is the Lebesgue σ-algebra and P is a
probability measure with strong correlation.

• For causal kernels, let Kice(x ,A) = P(A) for any A ∈ Eacc and
Kacc(x ,B) = P(B) for any B ∈ Eice.
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Ice Cream Sales and Fatal Rip Current Accidents

Figure: Correlation but no causation between ice-cream sales and rip current
accidents. A stands for the number of fatal rip current accidents, I for ice cream
sales, T for temperature, E for economy and W for world.
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Crop Yield and Price

Example
• We take (Erice × Eprice,Erice ⊗ Eprice,P,K), where Erice = Eprice = R,
Erice = Eprice is the Lebesgue σ-algebra and P is the observational
distribution, for simplicity assumed to be jointly Gaussian.

• Without any intervention, the higher the yield, the more rice there is
in the market, and lower the price.
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Crop Yield and Price
Example
• If the government intervenes by buying up extra rice or releasing rice

into the market from its stock, with the goal of stabilising supply at 3
million tonnes, then the price will stabilise accordingly.

• The corresponding causal kernel at rice = 3 will again be Gaussian,
say with mean 4.5 and variance 1:

Krice(3,p) =
1√
2π

e− 1
2 (p−4.5)2

.
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Crop Yield and Price
Example
• If, instead, the government fixes the price of rice at a high price, say 6

thousand Korean Won per kg, then the farmers will be incentivised to
produce more.

• The corresponding causal kernel at price = 6 will again be Gaussian,
say with mean 4 and variance 1:

Kprice(6, r) =
1√
2π

e− 1
2 (r−4)2

.
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Crop Yield and Price

Rice Price

Urice Uprice

Rice = frice(Price,Urice), Price = fprice(Rice,Uprice)

There may not be an observational distribution that is consistent with the
structural equations, or there might be many of them.
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1-dimensional Brownian Motion

• Take (×t∈R+Et ,⊗t∈R+Et ,P,K), where, for each t ∈ R+, Et = R and Et is
the Lebesgue σ-algebra, and P is the Wiener measure.

• For any s < t , we have causal kernels Ks(x , y) = 1√
2π(t−s)

e− 1
2(t−s) (y−x)2

and Kt(x , y) = 1√
2πs

e− 1
2s y2 .

“Past values affect the future, but future values do not affect the past.”
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1-dimensional Brownian Motion

• In Markov continuous-time stochastic processes, no time point has a
“parent”, since, between any two time points, there are infinitely
many time points.

• Since SCMs are explicitly dependent on parents, continuous time
stochastic processes cannot be expressed via SCMs, or DAGs.

• Brownian motion is not differentiable, so no approach based on
dynamical systems is applicable.
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Further Comparisons with SCMs
How is the causal information encoded?

• In SCMs, causal information is encoded in the structural equations,
Xj := fj(PAj ,Nj), j = 1, ...,d .

• What is encoded here is the causal effect on the subsystem Xj of the
whole system, i.e. the rest of the variables X1, ...,Xj−1,Xj+1, ...,Xd .

• In causal spaces, causal information is encoded in the causal kernels,
KS : S ∈ P(T ).

• What is encoded here is the causal effect on the whole system (Ω,H)
of the subsystem, (Ω,HS).
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What are the primitive objects?

SCMs
1 Variables (or nodes) X1, ...,Xd

2 Structural equations
fj(PAj ,Nj), j = 1, ...,d

3 Noise distribution PN

• Good interpretability.
• Only finite number of

variables considered, and
latent variables and cycles
are not allowed.

• Existence and uniqueness of
distribution not guaranteed
without acyclicity.

Causal Spaces
1 Probability space (Ω,H,P)
2 Causal kernels KS , S ∈ P(T )

• No interpretability.
• No restrictions on distribution

and causal interactions between
variables.

• Existence and uniqueness of
observational and interventional
distributions always guaranteed.
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Summary

• Causality is an important concept in many research domains, but
while many competing frameworks exist, there is no universally
agreed axiomatisation of it, and existing frameworks are not general
enough to express all possible distributions and causal interactions.

• Viewing causality as an extension of probability theory, and taking
interventions as a central idea, we proposed an axiomatisation of
causality based on measure theory.

• It is important to stress that existing frameworks such as SCMs or
potential outcomes are great for what they are set out to do, namely
identification from observational data, for which assumptions are
unavoidable. Our goal is not to replace existing frameworks.
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