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Setting



Structural Causal Models

A structural causal model consists of a graph G(V ,E ) encoding
dependencies and a set of functions FG parametrizing them.
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The Causal Discovery Set-Up

We parametrize the functions FG using a linear Additive Noise Model
(ANM):

Xt = ft (PaG(Xt)) + εt with all εt iid and linear ft .

Therefore, P(X1, . . . ,Xd) =
∏d

t=1 P(Xt | PaG(Xt)).
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We have that X = W⊤X + ε.
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Approaches to Causal Discovery

• Constraint-based methods Find graph structure by
matching conditional independences to the data.

• Score-based methods Find graph structure with best
goodness-of-fit criterion.
→ includes ordering-based searcha

1. Find a candidate causal order
2. Perform sparse regression of each variables onto its

predecessors in the order

(The trendyb approach: Differentiable score-based causal discovery. This

gave SOTA results on simulated data, even in non-identifiable settings!)

aTeyssier and Koller 2005.
bZheng et al. 2018; Vowels, Camgoz, and Bowden 2022.
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Methodology



The Elephant in the Room: Simulated Data

We have few high-quality real-world datasets. So when in doubt,
we just simulate some data. What’s the worst that could happen?
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Figure 4: Variance tends to explode
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Var-sortability: A Pattern in Causal Discovery Benchmarks

Var-sortability: The fraction of all cause-effect pairs for which the
effect has higher variance than the cause.

Definition : Var-sortability

Vsb(AG) =

∑d−1
i=1

∑
(s→t)∈Ai

G
1(Var(Xs)<Var(Xt))∑d−1

i=1
∑

(s→t)∈Ai
G

1

Var(X1) = 2
X1

X2

Var(X2) = 1

Var(X3) = 3
X3

v = 1+1+1
1+1+1+1 = 3

4
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Exploiting Var-sortability

We design two simple benchmark algorithms:

SortnRegress (a diagnostic tool for var-sortability)

1. Sort variables by increasing variance

2. Perform sparse regression of each node onto on all its
predecessors

MSE-GDS ("Mean-Squared-Error Greedy DAG Search" - to show
how MSE effectively sorts by variance)

1. Add the edge that reduces the total MSE the most

2. Stop when no more edges can be added, or no more
improvement possible
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Causal Discovery Benchmarks Are Easy to Game
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Figure 5: SIDa on 30 Erdős–Rényi graphs with 50 nodes and Gaussian noise

In common benchmarks, var-sortability is usually very high (0.9 to 1 for
linear functions, 0.7 to 1 for non-linear)
aPeters and Bühlmann 2015. 9



What To Do With Var-sortability

High var-sortability make causal discovery very easy. Can this be
realistic?
Standardization seems to offer a simple solution - but which
var-sortability values should we expect in real-world data?
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Sorting Our Way to Success

From Var-sortability to
R2-sortability



Drivers of Var-sortability (In Chain Graphs)

In a chain with weighted adjacency matrix W and noise standard
deviations σ, the var-sortability between X0 and Xp can be bounded
as

PW ,σ (Var(X0) < Var(Xp)) ≥ P

(
0 <

p−1∑
s=0

ln |Ws,s+1|

)
.

If E [ln |PW |] > 0, this formulation can be transformed into a
bound that only depends on the weight distribution:
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Cause-explained Variance

An increase in total variance while noise variance are iid implies an
increase (in expectation) in the fraction of inherited variance. We
can not compute this quantity directly. But we can compute an
upper bound given as

1− Var(Xt − E [Xt | XS ])

Var(Xt)

where S is the set {1, . . . , d} \ {t}.

In practice, we can simply compute the R2 of a model
Mθ

t,S(XS) : R|S | → R,XS 7→ θ⊤XS which performs regression of Xt

onto XS with parameters θ ∈ R|S |.
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Generalizing Sortability and R2-sortability

We propose a familiy of sortabilities for different criteria τ :

vτ (X ,G) =

∑d
i=1
∑

(s→t)∈Ai
G
1(τ(X ,s)<τ(X ,t))∑d

i=1
∑

(s→t)∈Ai
G

1
.

We obtain the previously discussed var-sortability for
τ(X , t) = Var(Xt) and denote it as vVar.

We newly introduce R2-sortability for τ(X , t) = R2(Mθ∗
t,S ,X ) and

denote it as vR2 .
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R2-sortability for Causal Discovery

R2-SortnRegress

1. Obtain a R2 value for each variable given all others
2. Sort by increasing R2

3. Perform sparse regression of each node onto all its predecessors
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Figure 6: 30 Erdős–Rényi graphs, 20 nodes, Gaussian noise 14



Exploiting R2-sortability on Standardized Data

Exploiting R2-sortability is not as effective as exploiting
var-sortability, but it does not require knowledge of the "true" data
scale. An example on standardized data:
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Why R2-sortability?

It is scale-invariant.
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Realistic Values?

All parameters can affect R2-sortability. The weight distribution
and the connectivity (average in-degree) have a big effect. In
Scale-free graphs, R2-sortability is extremely high across a wide
range of settings.
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(a) Erdős–Rényi graphs

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Avg. in-degree

2.5

2.0

1.5

1.0

0.5

-0.0

-0.5

-1.0

Ge
om

et
ric

 w
ei

gh
t m

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

vR2

(b) Scale-free graphs
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Takeaways

We make assumptions about some properties of ANM, but need to
choose values for all properties of ANMs in simulations. In doing
so, we may introduce patterns that are in effect additional
assumptions.

R2-sortability can help, because

• It provides a simple measure for one such simulation pattern.

• It is scale-invariant and can thus be assessed on real-world
data, allowing us to match simulation values to real values.
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Var-sortability and R2-sortability
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Figure 8: Alignment between var-sortability and R2-sortability 20
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