Learning Linear Non-Gaussian Causal Models via Algebraic Constraints

Elina Robeva
The University of British Columbia

April 21, 2023

Causal models

GEne Regulatory networks

DISEASE DIAGNOSIS GRAPHS

How can we learn the structure of these graphs from observations?

Structural causal models

Definition

A structural causal model consists of a directed acyclic graph (DAG) $G=(V, E)$, and a set of equations/assignments between the random variables $\left\{X_{v}: v \in V\right\}$:

$$
X_{v}=f_{v}\left(X_{\mathrm{pa}(v)}, \varepsilon_{v}\right), v \in V
$$

where $X_{\mathrm{pa}(v)}=\left(X_{u}: u \rightarrow v \in E\right)$ and ε_{v} is noise such that $\left\{\varepsilon_{v}: v \in V\right\}$ are independent noise terms.

Structural causal models

Definition

A structural causal model consists of a directed acyclic graph (DAG) $G=(V, E)$, and a set of equations/assignments between the random variables $\left\{X_{v}: v \in V\right\}$:

$$
X_{v}=f_{v}\left(X_{\mathrm{pa}(v)}, \varepsilon_{v}\right), v \in V
$$

where $X_{\mathrm{pa}(v)}=\left(X_{u}: u \rightarrow v \in E\right)$ and ε_{v} is noise such that $\left\{\varepsilon_{v}: v \in V\right\}$ are independent noise terms.

$$
\begin{aligned}
& X_{1}=f_{1}\left(\varepsilon_{1}\right) \\
& X_{2}=f_{2}\left(\varepsilon_{2}\right) \\
& X_{3}=f_{3}\left(X_{2}, \varepsilon_{3}\right) \\
& X_{4}=f_{4}\left(X_{1}, X_{2}, X_{3}, \varepsilon_{4}\right) \\
& X_{5}=f_{5}\left(X_{1}, X_{4}, \varepsilon_{5}\right)
\end{aligned}
$$

Structural causal models

Definition

A structural causal model consists of a directed acyclic graph (DAG) $G=(V, E)$, and a set of equations/assignments between the random variables $\left\{X_{v}: v \in V\right\}$:

$$
X_{v}=f_{v}\left(X_{\mathrm{pa}(v)}, \varepsilon_{v}\right), v \in V
$$

where $X_{\mathrm{pa}(v)}=\left(X_{u}: u \rightarrow v \in E\right)$ and ε_{v} is noise such that $\left\{\varepsilon_{v}: v \in V\right\}$ are independent noise terms.

$$
\begin{aligned}
& X_{1}=f_{1}\left(\varepsilon_{1}\right) \\
& X_{2}=f_{2}\left(\varepsilon_{2}\right) \\
& X_{3}=f_{3}\left(X_{2}, \varepsilon_{3}\right) \\
& X_{4}=f_{4}\left(X_{1}, X_{2}, X_{3}, \varepsilon_{4}\right) \\
& X_{5}=f_{5}\left(X_{1}, X_{4}, \varepsilon_{5}\right)
\end{aligned}
$$

Given samples $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^{|V|}$ arising from such a model, can we identify G ?

Structural causal models

Definition

A structural causal model consists of a directed acyclic graph (DAG) $G=(V, E)$, and a set of equations/assignments between the random variables $\left\{X_{v}: v \in V\right\}$:

$$
X_{v}=f_{v}\left(X_{\mathrm{pa}(v)}, \varepsilon_{v}\right), v \in V
$$

where $X_{\mathrm{pa}(v)}=\left(X_{u}: u \rightarrow v \in E\right)$ and ε_{v} is noise such that $\left\{\varepsilon_{v}: v \in V\right\}$ are independent noise terms.

$$
\begin{aligned}
& X_{1}=f_{1}\left(\varepsilon_{1}\right) \\
& X_{2}=f_{2}\left(\varepsilon_{2}\right) \\
& X_{3}=f_{3}\left(X_{2}, \varepsilon_{3}\right) \\
& X_{4}=f_{4}\left(X_{1}, X_{2}, X_{3}, \varepsilon_{4}\right) \\
& X_{5}=f_{5}\left(X_{1}, X_{4}, \varepsilon_{5}\right)
\end{aligned}
$$

Given samples $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^{|V|}$ arising from such a model, can we identify G ?

- Linear structural equation models

Linear structural equation models

$$
\begin{aligned}
& X_{1}=\varepsilon_{1} \\
& X_{2}=\varepsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\varepsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\varepsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\varepsilon_{5} .
\end{aligned}
$$

Linear structural equation models

$$
\begin{aligned}
& X_{1}=\varepsilon_{1} \\
& X_{2}=\varepsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\varepsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\varepsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\varepsilon_{5} .
\end{aligned}
$$

For a general directed acyclic graph $G=(V, E)$, the linear structural equation model corresponding to G consists of the the graph G and the linear equations

$$
X_{i}=\sum_{j \in \mathrm{pa}(i)} \lambda_{j i} X_{j}+\varepsilon_{i}, \quad \text { where the variables }\left\{\varepsilon_{i}\right\}_{i \in V} \text { are independent. }
$$

Linear structural equation models

$$
\begin{aligned}
& X_{1}=\varepsilon_{1} \\
& X_{2}=\varepsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\varepsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\varepsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\varepsilon_{5} .
\end{aligned}
$$

For a general directed acyclic graph $G=(V, E)$, the linear structural equation model corresponding to G consists of the the graph G and the linear equations

$$
X_{i}=\sum_{j \in \mathrm{pa}(i)} \lambda_{j i} X_{j}+\varepsilon_{i}, \quad \text { where the variables }\left\{\varepsilon_{i}\right\}_{i \in V} \text { are independent. }
$$

In matrix-vector form

$$
X=\Lambda^{T} X+\varepsilon
$$

Equivalently,

$$
X=(I-\Lambda)^{-T} \varepsilon
$$

Linear Gaussian models

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right),
$$

Linear Gaussian models

$$
\begin{gathered}
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right), \\
X=(I-\Lambda)^{-T} \epsilon .
\end{gathered}
$$

Linear Gaussian models

$$
\begin{gathered}
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right), \\
X=(I-\Lambda)^{-T} \epsilon .
\end{gathered}
$$

Thus, $X \sim \mathcal{N}(\mu, \Sigma)$, where

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1} .
$$

The set of distributions \mathcal{M}_{G} arising from a Gaussian linear causal model with DAG $G=(V, E)$ is called the directed Gaussian graphical model corresponding to G, and

$$
\mathcal{M}_{G}=\left\{\Sigma: \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \Lambda \in \mathbb{R}^{E}, \Omega \succ 0 \text { diagonal }\right\}
$$

Linear Gaussian models

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right),
$$

$$
X=(I-\Lambda)^{-T} \epsilon
$$

Thus, $X \sim \mathcal{N}(\mu, \Sigma)$, where

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1} .
$$

The set of distributions \mathcal{M}_{G} arising from a Gaussian linear causal model with DAG $G=(V, E)$ is called the directed Gaussian graphical model corresponding to G, and

$$
\mathcal{M}_{G}=\left\{\Sigma: \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \Lambda \in \mathbb{R}^{E}, \Omega \succ 0 \text { diagonal }\right\}
$$

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \text { where }
$$

$$
\Lambda=\left(\begin{array}{ccccc}
0 & 0 & 0 & \lambda_{14} & \lambda_{15} \\
0 & 0 & \lambda_{23} & \lambda_{24} & 0 \\
0 & 0 & 0 & \lambda_{34} & 0 \\
0 & 0 & 0 & 0 & \lambda_{45} \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \Omega=\left(\begin{array}{ccccc}
\omega_{11} & 0 & 0 & 0 & 0 \\
0 & \omega_{22} & 0 & 0 & 0 \\
0 & 0 & \omega_{33} & 0 & 0 \\
0 & 0 & 0 & \omega_{44} & 0 \\
0 & 0 & 0 & 0 & \omega_{55}
\end{array}\right)
$$

Linear Gaussian models

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\epsilon_{i}, \quad \text { where } \epsilon \sim \mathcal{N}(\nu, \Omega), \text { and } \Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right),
$$

$$
X=(I-\Lambda)^{-T} \epsilon
$$

Thus, $X \sim \mathcal{N}(\mu, \Sigma)$, where

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

The set of distributions \mathcal{M}_{G} arising from a Gaussian linear causal model with DAG $G=(V, E)$ is called the directed Gaussian graphical model corresponding to G, and

$$
\mathcal{M}_{G}=\left\{\Sigma: \Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \Lambda \in \mathbb{R}^{E}, \Omega \succ 0 \text { diagonal }\right\}
$$

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}, \text { where }
$$

$$
\Lambda=\left(\begin{array}{ccccc}
0 & 0 & 0 & \lambda_{14} & \lambda_{15} \\
0 & 0 & \lambda_{23} & \lambda_{24} & 0 \\
0 & 0 & 0 & \lambda_{34} & 0 \\
0 & 0 & 0 & 0 & \lambda_{45} \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \Omega=\left(\begin{array}{ccccc}
\omega_{11} & 0 & 0 & 0 & 0 \\
0 & \omega_{22} & 0 & 0 & 0 \\
0 & 0 & \omega_{33} & 0 & 0 \\
0 & 0 & 0 & \omega_{44} & 0 \\
0 & 0 & 0 & 0 & \omega_{55}
\end{array}\right)
$$

- Markov equivalence: $\mathcal{M}_{G}=\mathcal{M}_{H} \Longrightarrow$ cannot identify the graph G uniquely.

Non-Gaussian Linear Structural Equation Models

Given a DAG $G=(V, E)$,

$$
X=(I-\Lambda)^{-T} \varepsilon, \quad \text { where the }\left\{\varepsilon_{v}\right\}_{v \in V} \text { are independent and } \Lambda \in \mathbb{R}^{E} .
$$

Non-Gaussian Linear Structural Equation Models

Given a DAG $G=(V, E)$,

$$
X=(I-\Lambda)^{-T} \varepsilon, \quad \text { where the }\left\{\varepsilon_{v}\right\}_{v \in V} \text { are independent and } \Lambda \in \mathbb{R}^{E} .
$$

- Independent component analysis: Given $X=A \varepsilon$, where ε is a vector of independent components, want to recover A,
... up to permutation and scaling of its columns.

Non-Gaussian Linear Structural Equation Models

Given a DAG $G=(V, E)$,

$$
X=(I-\Lambda)^{-T} \varepsilon, \quad \text { where the }\left\{\varepsilon_{v}\right\}_{v \in V} \text { are independent and } \Lambda \in \mathbb{R}^{E} .
$$

- Independent component analysis: Given $X=A \varepsilon$, where ε is a vector of independent components, want to recover A,
... up to permutation and scaling of its columns.
- If at least two ε_{j} are Gaussian, then recovering A uniquely is impossible.

Non-Gaussian Linear Structural Equation Models

Given a DAG $G=(V, E)$,

$$
X=(I-\Lambda)^{-T} \varepsilon, \quad \text { where the }\left\{\varepsilon_{v}\right\}_{v \in V} \text { are independent and } \Lambda \in \mathbb{R}^{E} .
$$

- Independent component analysis: Given $X=A \varepsilon$, where ε is a vector of independent components, want to recover A,
... up to permutation and scaling of its columns.
- If at least two ε_{j} are Gaussian, then recovering A uniquely is impossible.

Theorem (Comon and Jutten, Handbook of Blind Source Separation, 2010) If all (or all but one) ε_{j} are non-Gaussian, A can be recovered (up to permutation and scaling).

Non-Gaussian Linear Structural Equation Models

Given a DAG $G=(V, E)$,

$$
X=(I-\Lambda)^{-T} \varepsilon, \quad \text { where the }\left\{\varepsilon_{v}\right\}_{v \in V} \text { are independent and } \Lambda \in \mathbb{R}^{E} .
$$

- Independent component analysis: Given $X=A \varepsilon$, where ε is a vector of independent components, want to recover A,
... up to permutation and scaling of its columns.
- If at least two ε_{j} are Gaussian, then recovering A uniquely is impossible.

Theorem (Comon and Jutten, Handbook of Blind Source Separation, 2010) If all (or all but one) ε_{j} are non-Gaussian, A can be recovered (up to permutation and scaling).

- ICA Methods: maximum likelihood estimation, 4th order cumulant tensor decomposition, maximizing |kurtosis| of $A^{-1} X$ (a measure of non-Gaussianity)

Linear Non-Gaussian Acyclic Models (LiNGAM)

$$
X=(I-\Lambda)^{-T} \varepsilon
$$

- Shimizu et al., 2006: LiNGAM; use ICA methods; estimate of $(I-\Lambda)$ has all entries non-zero
- Shimizu et al., 2011: Direct-LiNGAM; a source node is independent from regression residuals; does not work if \#observations < \#variables (high-dimensions)
- Wang and Drton, 2018: High-dimensional algorithm, exploits relationships between second and higher order moments of X

Linear Non-Gaussian Acyclic Models (LiNGAM)

$$
X=(I-\Lambda)^{-T} \varepsilon
$$

- Shimizu et al., 2006: LiNGAM; use ICA methods; estimate of $(I-\Lambda)$ has all entries non-zero
- Shimizu et al., 2011: Direct-LiNGAM; a source node is independent from regression residuals; does not work if \#observations < \#variables (high-dimensions)
- Wang and Drton, 2018: High-dimensional algorithm, exploits relationships between second and higher order moments of X

$$
\mathbb{E}\left[X_{1} X_{2}\right] \mathbb{E}\left[X_{1}^{3}\right]-\mathbb{E}\left[X_{1}^{2}\right] \mathbb{E}\left[X_{1}^{2} X_{2}\right] \neq 0
$$

generically, in particular, third order moments need to be non-Gaussian.

Looking at higher moments

$$
X=(I-\Lambda)^{-T} \varepsilon
$$

Definition

The linear structural equation model $\mathcal{M}^{(2,3)}(G)$ of second and third order moments corresponding to a DAG $G=(V, E)$ with $|V|=n$ is defined as

$$
\begin{aligned}
\mathcal{M}^{(2,3)}(G)=\{(S & =(I-\Lambda)^{-T} \Omega^{(2)}(I-\Lambda)^{-1}, \\
& \left.T=\Omega^{(3)} \bullet(I-\Lambda)^{-1} \bullet(I-\Lambda)^{-1} \bullet(I-\Lambda)^{-1}\right): \\
& \Omega^{(2)} \text { is } n \times n \text { positive definite diagonal matrix, } \\
& \left.\Omega^{(3)} \text { is } n \times n \times n \text { diagonal 3-way tensor, and } \Lambda \in \mathbb{R}^{E}\right\} .
\end{aligned}
$$

Here, - denotes the Tucker product.
Theorem (Améndola, Drton, Grosdos, Homs-Pons, and R., 2021+)
The set of second and third order moments (T, S) of a linear non-Gaussian causal model corresponding to a tree DAG are precisely the ones that satisfy certain quadratic binomials which arise as the 2×2 minors of certain matrices constructed from the DAG.

- $s_{i j}=0$ for all $i, j \in V$ for which there is no 2-trek between i and j;
- $t_{i j k}=0$ for all $i, j, k \in V$ for which there is no 2-trek between i, j, k;
- the 2×2 minors of the matrix $A_{i j}$ are 0 whenever there is a path from i to j, where

$$
A_{i j}=\left[\begin{array}{cccccc}
s_{i k_{1}} & \cdots & s_{i k_{r}} & t_{i \ell_{1} m_{1}} & \cdots & t_{i \ell_{q} m_{q}} \\
s_{j k_{1}} & \cdots & s_{j k_{r}} & t_{j \ell_{1} m_{1}} & \cdots & t_{j \ell_{q} m_{q}}
\end{array}\right],
$$

where

- k_{1}, \ldots, k_{r} are all vertices such that $\operatorname{top}\left(i, k_{a}\right)=\operatorname{top}\left(j, k_{a}\right)$ and
- $\left(l_{1}, m_{1}\right), \ldots,\left(l_{q}, m_{q}\right)$ are all pairs of vertices such that $\operatorname{top}\left(i, l_{b}, m_{b}\right)=\operatorname{top}\left(j, l_{b}, m_{b}\right)$.

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
\end{aligned}
$$

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4} \\
& X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{24} X_{2}+\lambda_{34} X_{3}+\tilde{\epsilon}_{4} \\
& X_{5}=\lambda_{45} X_{4}+\tilde{\epsilon}_{5}
\end{aligned}
$$

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\epsilon_{1} \\
& X_{2}=\epsilon_{2}
\end{aligned}
$$

$$
X_{3}=\lambda_{23} X_{2}+\epsilon_{3}
$$

$$
X_{4}=\lambda_{14} X_{1}+\lambda_{24} X_{2}+\lambda_{34} X_{3}+\epsilon_{4}
$$

$$
X_{5}=\lambda_{15} X_{1}+\lambda_{45} X_{4}+\epsilon_{5}
$$

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

where $\Lambda=\left(\begin{array}{ccccc}0 & 0 & 0 & \lambda_{14} & \lambda_{15} \\ 0 & 0 & \lambda_{23} & \lambda_{24} & 0 \\ 0 & 0 & 0 & \lambda_{34} & 0 \\ 0 & 0 & 0 & 0 & \lambda_{45} \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \in \mathbb{R}^{E}$,
$\Omega=\left(\begin{array}{ccccc}\omega_{11} & 0 & 0 & 0 & 0 \\ 0 & \omega_{22} & 0 & 0 & 0 \\ 0 & 0 & \omega_{33} & 0 & 0 \\ 0 & 0 & 0 & \omega_{44} & 0 \\ 0 & 0 & 0 & 0 & \omega_{55}\end{array}\right) \in \mathrm{PD}$.

$$
\begin{aligned}
& X_{2}=\epsilon_{2} \\
& X_{3}=\lambda_{23} X_{2}+\epsilon_{3} \\
& X_{4}=\lambda_{24} X_{2}+\lambda_{34} X_{3}+\tilde{\epsilon}_{4} \\
& X_{5}=\lambda_{45} X_{4}+\tilde{\epsilon}_{5}
\end{aligned}
$$

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

$$
\text { where } \Lambda=\left(\begin{array}{cccc}
0 & \lambda_{23} & \lambda_{24} & 0 \\
0 & 0 & \lambda_{34} & 0 \\
0 & 0 & 0 & \lambda_{45} \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathbb{R}^{E}
$$

$$
\Omega=\left(\begin{array}{cccc}
\omega_{22} & 0 & 0 & 0 \\
0 & \omega_{33} & 0 & 0 \\
0 & 0 & \omega_{44} & \omega_{45} \\
0 & 0 & \omega_{45} & \omega_{55}
\end{array}\right) \in \mathrm{PD}^{B}
$$

Introducing hidden variables

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\varepsilon_{1} \\
& X_{2}=\lambda_{12} X_{1}+\varepsilon_{2} \\
& X_{3}=\lambda_{13} X_{1}+\varepsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\varepsilon_{4} \\
& X_{5}=\lambda_{35} X_{3}+\lambda_{45} X_{4}+\varepsilon_{5} .
\end{aligned}
$$

$X_{2}=\tilde{\varepsilon}_{2}$
$X_{3}=\tilde{\varepsilon}_{3}$
$X_{4}=\tilde{\varepsilon}_{4}$
$X_{5}=\lambda_{35} X_{3}+\lambda_{45} X_{4}+\varepsilon_{5}$,
where $\varepsilon_{5} \Perp \tilde{\varepsilon}_{2}, \tilde{\varepsilon}_{3}, \tilde{\varepsilon}_{4}$.

Introducing hidden variables

$$
\begin{aligned}
& X_{1}=\varepsilon_{1} \\
& X_{2}=\lambda_{12} X_{1}+\varepsilon_{2} \\
& X_{3}=\lambda_{13} X_{1}+\varepsilon_{3} \\
& X_{4}=\lambda_{14} X_{1}+\varepsilon_{4} \\
& X_{5}=\lambda_{35} X_{3}+\lambda_{45} X_{4}+\varepsilon_{5}
\end{aligned}
$$

$$
X_{2}=\tilde{\varepsilon}_{2}
$$

$$
X_{3}=\tilde{\varepsilon}_{3}
$$

$$
X_{4}=\tilde{\varepsilon}_{4}
$$

$$
X_{5}=\lambda_{35} X_{3}+\lambda_{45} X_{4}+\varepsilon_{5},
$$

$$
\text { where } \varepsilon_{5} \Perp \tilde{\varepsilon}_{2}, \tilde{\varepsilon}_{3}, \tilde{\varepsilon}_{4} .
$$

The new graph $G=(V, E, H)$ has directed edges E and multi-directed edges H.

Learning LiNGAMs with hidden variables from observational data

Existing methods for learning $G=(V, E, H)$ either

- Use ICA methods (Hoyer et al., 2008), which don't guarantee convergence to a global optimum, OR
- Only learn a graph $G=(V, E, B)$ with directed and bidirected edges (ParcelLiNGAM, Tashiro et al., 2014, Wang and Drton, 2020).

Learning LiNGAMs with hidden variables from observational data

Existing methods for learning $G=(V, E, H)$ either

- Use ICA methods (Hoyer et al., 2008), which don't guarantee convergence to a global optimum, OR
- Only learn a graph $G=(V, E, B)$ with directed and bidirected edges (ParcelLiNGAM, Tashiro et al., 2014, Wang and Drton, 2020).

Learning LiNGAMs with hidden variables from observational data

Existing methods for learning $G=(V, E, H)$ either

- Use ICA methods (Hoyer et al., 2008), which don't guarantee convergence to a global optimum, OR
- Only learn a graph $G=(V, E, B)$ with directed and bidirected edges (ParcelLiNGAM, Tashiro et al., 2014, Wang and Drton, 2020).

- (Liu, Robeva, Wang, 2020): Learn $G=(V, E, H)$, where H has multidirected edges; G is a bow-free acyclic graph; use high-order cumulant information

Vanishing of cumulants

- For a zero-mean random vector $X=\left(X_{1}, \ldots, X_{d}\right)$, its k-th order cumulant is an $d \times \cdots \times d$ (k times) tensor $C^{(k)}$ whose entries can be obtained from the moments of X, e.g. for $k=4$:
$C_{i_{1}, i_{2}, i_{3}, i_{4}}^{(4)}=\mathbb{E}\left[X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{2}}\right] \mathbb{E}\left[X_{i_{3}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{3}}\right] \mathbb{E}\left[X_{i_{2}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{4}}\right] \mathbb{E}\left[X_{i_{2}} X_{i_{3}}\right]$.

Vanishing of cumulants

- For a zero-mean random vector $X=\left(X_{1}, \ldots, X_{d}\right)$, its k-th order cumulant is an $d \times \cdots \times d$ (k times) tensor $C^{(k)}$ whose entries can be obtained from the moments of X, e.g. for $k=4$:
$C_{i_{1}, i_{2}, i_{3}, i_{4}}^{(4)}=\mathbb{E}\left[X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{2}}\right] \mathbb{E}\left[X_{i_{3}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{3}}\right] \mathbb{E}\left[X_{i_{2}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{4}}\right] \mathbb{E}\left[X_{i_{2}} X_{i_{3}}\right]$.
Theorem (Robeva and Seby, 2020)
If X comes from a linear non-Gaussian acyclic model with graph $G=(V, E, H)$ and X has cumulants $C^{(k)}$, then

$$
C_{i_{1}, \ldots, i_{k}}^{(k)}=0
$$

if and only if there is no k-trek between the vertices i_{1}, \ldots, i_{k} in G.

Vanishing of cumulants

- For a zero-mean random vector $X=\left(X_{1}, \ldots, X_{d}\right)$, its k-th order cumulant is an $d \times \cdots \times d$ (k times) tensor $C^{(k)}$ whose entries can be obtained from the moments of X, e.g. for $k=4$:
$C_{i_{1}, i_{2}, i_{3}, i_{4}}^{(4)}=\mathbb{E}\left[X_{i_{1}} X_{i_{2}} X_{i_{3}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{2}}\right] \mathbb{E}\left[X_{i_{3}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{3}}\right] \mathbb{E}\left[X_{i_{2}} X_{i_{4}}\right]-\mathbb{E}\left[X_{i_{1}} X_{i_{4}}\right] \mathbb{E}\left[X_{i_{2}} X_{i_{3}}\right]$.
Theorem (Robeva and Seby, 2020)
If X comes from a linear non-Gaussian acyclic model with graph $G=(V, E, H)$ and X has cumulants $C^{(k)}$, then

$$
C_{i_{1}, \ldots, i_{k}}^{(k)}=0
$$

if and only if there is no k-trek between the vertices i_{1}, \ldots, i_{k} in G.

k-treks

Theorem (Robeva and Seby, 2020)
If X comes from a linear non-Gaussian causal model with graph $G=(V, E, H)$ and X has cumulants $C^{(k)}$, then

$$
C_{i_{1}, \ldots, i_{k}}^{(k)}=0
$$

if and only if there is no k-trek between the vertices i_{1}, \ldots, i_{k} in G.

- Thus, we can distinguish:

$$
C_{2,3,4}^{(3)} \neq 0
$$

$$
C_{2,3,4}^{(3)}=0
$$

- Get and algorithm to learn $G=(V, E, H)$ based on high-order cumulants.

Learning $G=(V, E, H)_{\lfloor\text {Luiu, Robeon, Warser 200] }}$

1. Obtain samples $Y=\left(Y^{(1)}, \ldots, Y^{(N)}\right)$ from LiNGAM with unknown $G=(V, E, H)$

Learning $G=(V, E, H)_{\lfloor\text {Lui. Poomen, Wang 2000 }}$

1. Obtain samples $Y=\left(Y^{(1)}, \ldots, Y^{(N)}\right)$ from LiNGAM with unknown $G=(V, E, H)$

2. Learn a LiNGAM with graph (V, E, B) with bidirected edges and coefficient matrix Λ, e.g. using [Wang and Drton, 2020]

Learning $G=(V, E, H)$ [Liu, Robeva, Wang, 2020]

1. Obtain samples $Y=\left(Y^{(1)}, \ldots, Y^{(N)}\right)$ from LiNGAM with unknown $G=(V, E, H)$
2. "Remove" directed edges E via $X=Y-\Lambda^{T} Y$.

3. Learn a LiNGAM with graph (V, E, B) with bidirected edges and coefficient matrix Λ, e.g. using [Wang and Drton, 2020]

Learning $G=(V, E, H)_{[L i u, ~ R o b e v a, ~ W a n g, ~ 2020] ~}$

1. Obtain samples $Y=\left(Y^{(1)}, \ldots, Y^{(N)}\right)$ from LiNGAM with unknown $G=(V, E, H)$

2. "Remove" directed edges E via $X=Y-\Lambda^{T} Y$.

3. Identify the multidirected edges H by "merging" some of the bidirected edges in graph (V, \emptyset, B) using the cumulants of X.
4. Learn a LiNGAM with graph (V, E, B) with bidirected edges and coefficient matrix Λ, e.g. using [Wang and Drton, 2020]

Learning $G=(V, E, H)_{[L i u, ~ R o b e v a, ~ W a n g, ~ 2020] ~}$

1. Obtain samples $Y=\left(Y^{(1)}, \ldots, Y^{(N)}\right)$ from LiNGAM with unknown $G=(V, E, H)$

2. Learn a LiNGAM with graph (V, E, B) with bidirected edges and coefficient matrix Λ, e.g. using [Wang and Drton, 2020]
3. "Remove" directed edges E via $X=Y-\Lambda^{T} Y$.

4. Identify the multidirected edges H by "merging" some of the bidirected edges in graph (V, \emptyset, B) using the cumulants of X.
5. Combine to obtain $G=(V, E, H)$.

The cyclic case

[Joint work in progress with Mathias Drton, Marina Garrote-Lopez, and Niko Nikov]

- Can we still uniquely learn the graph?
- What algorithms can we use?

Equivalence classes

- If there are cycles, we cannot learn the graph uniquely.

$$
\begin{aligned}
& X_{1}=\lambda_{41} X_{4}+\varepsilon_{1}, \\
& X_{2}=\lambda_{12} X_{1}+\varepsilon_{2}, \\
& X_{3}=\lambda_{23} X_{2}+\varepsilon_{3}, \\
& X_{4}=\lambda_{34} X_{3}+\varepsilon_{4} .
\end{aligned}
$$

$$
X_{4}=\frac{1}{\lambda_{41}} X_{1}-\frac{1}{\lambda_{41}} \varepsilon_{1}
$$

$$
X_{1}=\frac{1}{\lambda_{12}} X_{2}-\frac{1}{\lambda_{12}} \varepsilon_{2},
$$

$$
X_{2}=\frac{1}{\lambda_{23}} X_{3}-\frac{1}{\lambda_{23}} \varepsilon_{3},
$$

$$
X_{3}=\frac{1}{\lambda_{34}} X_{4}-\frac{1}{\lambda_{34}} \varepsilon_{4} .
$$

Equivalence classes

Theorem (DGNR 2023+)

Two directed graphs G and G^{\prime} give rise to the same linear non-Gaussian model if and only if there exist vertex-disjoint cycles C_{1}, \ldots, C_{k} in G such that
\rightarrow the directions of the cycles C_{1}, \ldots, C_{k} are reversed in G^{\prime}, and
\checkmark an edge $v_{i} \rightarrow v_{j}$ where $v_{i} \notin C_{s}$ and $v_{j} \in C_{s}$ is in G if and only if $v_{i} \rightarrow v_{j-1}$ is in G^{\prime}, where $v_{j-1} \rightarrow v_{j}$ is on the cycle C_{s} in G.

Example

G

Algorithms for learning the graph (and its equivalence class)

- ICA-based such as [Lacerda, Spirtes, Ramsey, Hoyer, 2012].
- Can we devise a method like [Wang and Drton, 2018]'s for the cyclic case which will also work in the high-dimensional setting?

Cyclic graphs

- Strong components: maximal sets of vertices with a directed path between any two of them.
- Get a topological ordering of the strong components
- $\{1,2,3,4\},\{9,10,11\},\{5,6,7,8\}$.

A specific family of cyclic graphs

- We will only consider graphs whose strong components are simple cycles.

A specific family of cyclic graphs

- We will only consider graphs whose strong components are simple cycles.

- Note: it is easy to describe all equivalent graphs to such a graph.

Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2 nd and 3rd moments S and T as above Out: A causal graph $G=(V, E)$, a representative of an equivalence class

Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2 nd and 3rd moments S and T as above
Out: A causal graph $G=(V, E)$, a representative of an equivalence class
Define for any $u, v \in V$:

$$
d_{u v}^{2 \times 2}=\operatorname{det}\left(\begin{array}{cc}
s_{u u} & s_{u v} \\
t_{u u u} & t_{u u v}
\end{array}\right), \quad d_{u v}^{3 \times 3}=\operatorname{det}\left(\begin{array}{ccc}
s_{u u} & s_{u v} & s_{v v} \\
t_{u u u} & t_{u u v} & t_{u v v} \\
t_{u u v} & t_{u v v} & t_{v v v}
\end{array}\right)
$$

Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2 nd and 3 rd moments S and T as above
Out: A causal graph $G=(V, E)$, a representative of an equivalence class
Define for any $u, v \in V$:

$$
d_{u v}^{2 \times 2}=\operatorname{det}\left(\begin{array}{cc}
s_{u u} & s_{u v} \\
t_{u u u} & t_{u u v}
\end{array}\right), \quad d_{u v}^{3 \times 3}=\operatorname{det}\left(\begin{array}{ccc}
s_{u u} & s_{u v} & s_{v v} \\
t_{u u u} & t_{u u v} & t_{u v v} \\
t_{u u v} & t_{u v v} & t_{v v v}
\end{array}\right)
$$

Step 1: Compute $d_{u v}^{2 \times 2}, d_{u v}^{3 \times 3}$ for all $u, v \in V$.

Step 2:

$\mathcal{C}_{1}=\left\{r \in V: d_{r v}^{2 \times 2}=d_{r v}^{3 \times 3}=0\right.$ for all $\left.v \in V\right\}$.
Lemma: \mathcal{C}_{1} consists of all root nodes.
Step 3: Regress $V \backslash \mathcal{C}_{1}$ on \mathcal{C}_{1}. Return to Step 1 and repeat Steps $1-3$ until \mathcal{C}_{1} is empty.

Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2 nd and 3rd moments S and T as above
Out: A causal graph $G=(V, E)$, a representative of an equivalence class
Define for any $u, v \in V$:

$$
d_{u v}^{2 \times 2}=\operatorname{det}\left(\begin{array}{cc}
s_{u u} & s_{u v} \\
t_{u u u} & t_{u u v}
\end{array}\right), \quad d_{u v}^{3 \times 3}=\operatorname{det}\left(\begin{array}{ccc}
s_{u u} & s_{u v} & s_{v v} \\
t_{u u u} & t_{u u v} & t_{u v v} \\
t_{u u v} & t_{u v v} & t_{v v v}
\end{array}\right)
$$

Step 1: Compute $d_{u v}^{2 \times 2}, d_{u v}^{3 \times 3}$ for all $u, v \in V$.

Step 2:

$\mathcal{C}_{1}=\left\{r \in V: d_{r v}^{2 \times 2}=d_{r v}^{3 \times 3}=0\right.$ for all $\left.v \in V\right\}$.
Lemma: \mathcal{C}_{1} consists of all root nodes.
Step 3: Regress $V \backslash \mathcal{C}_{1}$ on \mathcal{C}_{1}. Return to Step 1 and repeat Steps 1-3 until \mathcal{C}_{1} is empty.

Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2 nd and 3rd moments S and T as above
Out: A causal graph $G=(V, E)$, a representative of an equivalence class
Define for any $u, v \in V$:

$$
d_{u v}^{2 \times 2}=\operatorname{det}\left(\begin{array}{cc}
s_{u u} & s_{u v} \\
t_{u u u} & t_{u u v}
\end{array}\right), \quad d_{u v}^{3 \times 3}=\operatorname{det}\left(\begin{array}{ccc}
s_{u u} & s_{u v} & s_{v v} \\
t_{u u u} & t_{u u v} & t_{u v v} \\
t_{u u v} & t_{u v v} & t_{v v v}
\end{array}\right)
$$

Step 1: Compute $d_{u v}^{2 \times 2}, d_{u v}^{3 \times 3}$ for all $u, v \in V$.

Step 2:

$\mathcal{C}_{1}=\left\{r \in V: d_{r v}^{2 \times 2}=d_{r v}^{3 \times 3}=0\right.$ for all $\left.v \in V\right\}$.
Lemma: \mathcal{C}_{1} consists of all root nodes.
Step 3: Regress $V \backslash \mathcal{C}_{1}$ on \mathcal{C}_{1}. Return to Step 1 and repeat Steps 1-3 until \mathcal{C}_{1} is empty.

Proposed recovery algorithm: learning the cycles

Step 4: $\mathcal{C}_{2}^{\prime}=$ collection of all maximal $C \subseteq V$ such that $d_{u v}^{3 \times 3}=0, d_{u v}^{2 \times 2} \neq 0$ for all $u, v \in C$. Prune \mathcal{C}_{2}^{\prime} to obtain \mathcal{C}_{2}.
Lemma: \mathcal{C}_{2} consists of all root cycles.

Proposed recovery algorithm: learning the cycles

Step 4: $\mathcal{C}_{2}^{\prime}=$ collection of all maximal $C \subseteq V$ such that $d_{u v}^{3 \times 3}=0, d_{u v}^{2 \times 2} \neq 0$ for all $u, v \in C$. Prune \mathcal{C}_{2}^{\prime} to obtain \mathcal{C}_{2}.
Lemma: \mathcal{C}_{2} consists of all root cycles.
Step 5: Regress the rest of the vertices on \mathcal{C}_{2}. Return to Step 2.

Proposed recovery algorithm: learning the cycles

Step 4: $\mathcal{C}_{2}^{\prime}=$ collection of all maximal $C \subseteq V$ such that $d_{u v}^{3 \times 3}=0, d_{u v}^{2 \times 2} \neq 0$ for all $u, v \in C$. Prune \mathcal{C}_{2}^{\prime} to obtain \mathcal{C}_{2}.
Lemma: \mathcal{C}_{2} consists of all root cycles.
Step 5: Regress the rest of the vertices on \mathcal{C}_{2}. Return to Step 2.

Proposed recovery algorithm: learning the cycles

Step 4: $\mathcal{C}_{2}^{\prime}=$ collection of all maximal $C \subseteq V$ such that $d_{u v}^{3 \times 3}=0, d_{u v}^{2 \times 2} \neq 0$ for all $u, v \in C$. Prune \mathcal{C}_{2}^{\prime} to obtain \mathcal{C}_{2}.
Lemma: \mathcal{C}_{2} consists of all root cycles.
Step 5: Regress the rest of the vertices on \mathcal{C}_{2}. Return to Step 2.

Proposed recovery algorithm: learning the cycles

Step 4: $\mathcal{C}_{2}^{\prime}=$ collection of all maximal $C \subseteq V$ such that $d_{u v}^{3 \times 3}=0, d_{u v}^{2 \times 2} \neq 0$ for all $u, v \in C$. Prune \mathcal{C}_{2}^{\prime} to obtain \mathcal{C}_{2}.
Lemma: \mathcal{C}_{2} consists of all root cycles.
Step 5: Regress the rest of the vertices on \mathcal{C}_{2}. Return to Step 2.

Proposed recovery algorithm: learning the cycles

Step 4: $\mathcal{C}_{2}^{\prime}=$ collection of all maximal $C \subseteq V$ such that $d_{u v}^{3 \times 3}=0, d_{u v}^{2 \times 2} \neq 0$ for all $u, v \in C$. Prune \mathcal{C}_{2}^{\prime} to obtain \mathcal{C}_{2}.
Lemma: \mathcal{C}_{2} consists of all root cycles.
Step 5: Regress the rest of the vertices on \mathcal{C}_{2}. Return to Step 2.

Proposed recovery algorithm

We know: the cycles and a topological ordering:

$$
\{1\},\{2,3,4\},\{11\},\{12\},\{5,6,7\},\{8,9,10\}
$$

Step 6: Learn ancestry relationships among cycles: use regression backwards in topological order.

Proposed recovery algorithm

We know: the cycles and a topological ordering:

$$
\{1\},\{2,3,4\},\{11\},\{12\},\{5,6,7\},\{8,9,10\}
$$

Step 6: Learn ancestry relationships among cycles: use regression backwards in topological order.

Proposed recovery algorithm

We know: the cycles and a topological ordering:

$$
\{1\},\{2,3,4\},\{11\},\{12\},\{5,6,7\},\{8,9,10\}
$$

Step 6: Learn ancestry relationships among cycles: use regression backwards in topological order.

Step 7: Starting from the source nodes/cycles, learn the edges and their weights.

Proposed recovery algorithm

We know: the cycles and a topological ordering:

$$
\{1\},\{2,3,4\},\{11\},\{12\},\{5,6,7\},\{8,9,10\}
$$

Step 6: Learn ancestry relationships among cycles: use regression backwards in topological order.

Step 7: Starting from the source nodes/cycles, learn the edges and their weights.

- Learn the skeleton for each root cycle by using conditional independence.
- Turn all root cycles into root nodes by "undoing them".
- Learn edges/weights between cycles.

"Undoing" a root cycle

Lemma:

- If the cycle length is at least 3 , then there is a linear equation in λ_{01}

$$
p\left(s_{i j}, t_{i j k}: i, j, k \in\{0,1,2\}\right) \lambda_{01}=q\left(s_{i j}, t_{i j k}: i, j, k \in\{0,1,2\}\right),
$$

where $p\left(s_{i j}, t_{i j k}: i, j, k \in\{0,1,2\}\right)$ is nonzero with probability 1 . Thus, we can compute λ_{01} uniquely.

- If the cycle length is 2 , there is a quadratic equation

$$
p\left(s_{i j}, t_{i j k}\right) \lambda_{01}^{2}+q\left(s_{i j}, t_{i j k}\right) \lambda_{0,1}+r\left(s_{i j}, t_{i j k}\right)=0 .
$$

with $p\left(s_{i j}, t_{i j k}\right)$ nonzero. Thus, there are two solutions for λ_{01}.

Learning edges/weights between cycles

- Regress on all parent nodes and take residuals.
- Learn edge weights on cycle.
- From regression coefficients, learn edge weights from parent nodes to cycle.

Learning edges/weights between cycles

- Regress on all parent nodes and take residuals.
- Learn edge weights on cycle.
- From regression coefficients, learn edge weights from parent nodes to cycle.

Learning edges/weights between cycles

- Regress on all parent nodes and take residuals.
- Learn edge weights on cycle.
- From regression coefficients, learn edge weights from parent nodes to cycle.

Learning edges/weights between cycles

- Regress on all (possible) parent nodes and take residuals.
- Learn edge weights on cycle.
- From regression coefficients, learn edge weights from parent nodes to cycle.

Proposed algorithm: learning edges and edge weights

Further questions

- Implement algorithm and compare with others
- Compute sample size complexity
- Extend to all cyclic graphs
- More algebraic constraints that can be used?

Thank you!

C. Améndola, M. Drton, A. Grosdos, R. Homs-Pons, and E. Robeva. Third-order moment varieties of non-Gaussian graphical models. Information and Inference (2023)
M. Drton, M. Garrote-Lopéz, N. Nikov, and E. Robeva. Learning cyclic linear non-Gaussian causal models via algebraic constraints. In preparation
Y. Liu, E. Robeva, and H. Wang. Learning Linear Non-Gaussian Graphical Models with Multidirected Edges. Journal of Causal Inference (2021)
E. Robeva and J.B. Seby. Multi-trek Separation in Linear Structural Equation Models. SIAM Journal on Applied Algebra and Geometry (SIAGA) (2021)

More algebraic constraints

- (Robeva, Seby, 2020): Characterize vanishing of determinants of subtensors of k-th cumulant tensor $C^{(k)}$ in a LiNGAM with graph $G=(V, E, H)$;

$$
\operatorname{det}\left(C_{A_{1}, \ldots, A_{k}}^{(k)}\right)=0
$$

if and only if every system of k-treks between A_{1}, \ldots, A_{k} has a sided intersection.

Here:

$$
\operatorname{det}(T)=\sum_{\sigma_{2}, \ldots, \sigma_{k} \in \mathfrak{S}(d)} \operatorname{sign}\left(\sigma_{2}\right) \cdots \operatorname{sign}\left(\sigma_{k}\right) \prod_{i=1}^{d} T_{i, \sigma_{2}(i), \ldots, \sigma_{k}(i)}
$$

is the combinatorial hyperdeterminant.

More algebraic constraints

- (Robeva, Seby, 2020): Characterize vanishing of determinants of subtensors of k-th cumulant tensor $C^{(k)}$ in a LiNGAM with graph $G=(V, E, H)$;

$$
\operatorname{det}\left(C_{A_{1}, \ldots, A_{k}}^{(k)}\right)=0
$$

if and only if every system of k-treks between A_{1}, \ldots, A_{k} has a sided intersection.

Here:

$$
\operatorname{det}(T)=\sum_{\sigma_{2}, \ldots, \sigma_{k} \in \mathfrak{S}(d)} \operatorname{sign}\left(\sigma_{2}\right) \cdots \operatorname{sign}\left(\sigma_{k}\right) \prod_{i=1}^{d} T_{i, \sigma_{2}(i), \ldots, \sigma_{k}(i)}
$$

is the combinatorial hyperdeterminant.

- Can we learn such relationships in the case of both cycles and hidden variables?

