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Causal models

ANGINA
PECTORIS

[Barbini, Manzi, Barbini 2013]

ROX1
‘ [Xing and van der Laan, 2005]

GENE REGULATORY NETWORKS DISEASE DIAGNOSIS GRAPHS

How can we learn the structure of these graphs from observations?
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Structural causal models

Definition
A structural causal model consists of a directed acyclic graph (DAG) G = (V, E), and
a set of equations/assignments between the random variables {X, : v € V}:

Xy = fV(Xpa(v),&‘v), vevV

where X,y = (Xu : v — v € E) and e, is noise such that {e, : v € V} are independent
noise terms.

46



Structural causal models

Definition
A structural causal model consists of a directed acyclic graph (DAG) G = (V, E), and
a set of equations/assignments between the random variables {X, : v € V}:
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@ @

Xo = h(e2)
X3 = f3(X2,€3)

® 9‘@ Xo = (6.3, .21

X5 = f5(X1, X4, €5).
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Structural causal models

Definition
A structural causal model consists of a directed acyclic graph (DAG) G = (V, E), and
a set of equations/assignments between the random variables {X, : v € V}:

Xy = fV(Xpa(v),&‘v), vevV

where X,y = (Xu : v — v € E) and e, is noise such that {e, : v € V} are independent
noise terms.

@ @

Xo = h(e2)
X3 = f3(X2,€3)

® 9‘@ Xo = (6.3, .21

X5 = f5(X1, X4, €5).

Given samples X(1) ..., X(" ¢ RIVI arising from such a model, can we identify G?

» Linear structural equation models
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Linear structural equation models

w4

X1=¢1

Xo = ¢ep

X3 = A3 Xo +e3

Xy = A1a X1 + A2aXo + X34 X3 + &4
X5 = A15X1 + A5 X4 + €5.
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Linear structural equation models

2 @ %i=a

X2 =2
X3 = A3 Xa + €3

e e‘a Xg = A1a X1 4+ X2aXo + X34 X3 + €4

X5 = A15X1 + A5 X4 + €5.

For a general directed acyclic graph G = (V/, E), the linear structural equation model
corresponding to G consists of the the graph G and the linear equations

Z iXj +¢€i,  where the variables {€;};cv are independent.
Jjepa(i)
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Linear structural equation models

2 @ %i=a

X2 =2
X3 = A3 Xa + €3

e e‘a Xg = A1a X1 4+ X2aXo + X34 X3 + €4

X5 = A15X1 + A5 X4 + €5.

For a general directed acyclic graph G = (V/, E), the linear structural equation model
corresponding to G consists of the the graph G and the linear equations

Z iXj +¢€i,  where the variables {€;};cv are independent.
Jjepa(i)

In matrix-vector form
X=A"X+e.

Equivalently,
X=0-N"Te
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Linear Gaussian models

Xi= > XiXj+¢, wheree~N(v,Q), and Q = diag(ws, ..

Jj€pa(i)

. 7“)!1)7
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Jj€pa(i)
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Linear Gaussian models

Xi= > XiXj+e, wheree~N(v,Q), and Q = diag(wi, . .., wn),
Jj€pa(i)

X=0U-N"Te

Thus, X ~ N(p, X), where
Y=0U-AN"TQU-N"L

The set of distributions M arising from a Gaussian linear causal model with DAG
G = (V, E) is called the directed Gaussian graphical model corresponding to G, and

Mg={T : T=0U-AN)"TQU—-A)"1, AeRE, Q> 0 diagonal}.
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Linear Gaussian models

Xi= > XiXj+e, wheree~N(v,Q), and Q = diag(wi, . .., wn),
Jj€pa(i)

X=0U-N"Te

Thus, X ~ N(p, X), where
Y=0U-AN"TQU-N"L

The set of distributions M arising from a Gaussian linear causal model with DAG
G = (V, E) is called the directed Gaussian graphical model corresponding to G, and

Mg={T : T=0U-AN)"TQU—-A)"1, AeRE, Q> 0 diagonal}.

S=(0—=AN"TQ0—A)"1, where

0 0 0 A A wir 0 0 0 0
0 0 Ay Ay O 0 wy O 0 0

A=[0 0o 0 xym o0 [,a=|o0 0 wi O 0

0 0 o0 0 s 0 0 0 wy O

e e a 0 0 o 0 0 0 0 0 0 wss

» Markov equivalence: M = My = cannot identify the graph G uniquely.



Non-Gaussian Linear Structural Equation Models

Given a DAG G = (V,E),

X=(I-N)"Te, wherethe {e,},cv are independent and A € RE.
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Non-Gaussian Linear Structural Equation Models
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independent components, want to recover A,
. up to permutation and scaling of its columns.
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Non-Gaussian Linear Structural Equation Models

Given a DAG G = (V,E),

X=(I-N)"Te, wherethe {e,},cv are independent and A € RE.

» Independent component analysis: Given X = Ae, where ¢ is a vector of
independent components, want to recover A,
. up to permutation and scaling of its columns.

> If at least two ¢; are Gaussian, then recovering A uniquely is impossible.

Theorem (Comon and Jutten, Handbook of Blind Source Separation, 2010)

If all (or all but one) €; are non-Gaussian, A can be recovered (up to permutation
and scaling).
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Non-Gaussian Linear Structural Equation Models

Given a DAG G = (V,E),

X=(I-N)"Te, wherethe {e,},cv are independent and A € RE.

» Independent component analysis: Given X = Ae, where ¢ is a vector of
independent components, want to recover A,
. up to permutation and scaling of its columns.

> If at least two ¢; are Gaussian, then recovering A uniquely is impossible.

Theorem (Comon and Jutten, Handbook of Blind Source Separation, 2010)
If all (or all but one) €; are non-Gaussian, A can be recovered (up to permutation
and scaling).

» |CA Methods: maximum likelihood estimation, 4th order cumulant tensor
decomposition, maximizing |kurtosis| of A~1X (a measure of non-Gaussianity)
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Linear Non-Gaussian Acyclic Models (LINGAM)

X=(-N""Te

» Shimizu et al., 2006: LINGAM; use ICA methods; estimate of (I — A) has all
entries non-zero

» Shimizu et al., 2011: Direct-LINGAM; a source node is independent from
regression residuals; does not work if #observations < #variables
(high-dimensions)

» Wang and Drton, 2018: High-dimensional algorithm, exploits relationships
between second and higher order moments of X
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Linear Non-Gaussian Acyclic Models (LINGAM)

X=(-N""Te

» Shimizu et al., 2006: LINGAM; use ICA methods; estimate of (I — A) has all
entries non-zero

» Shimizu et al., 2011: Direct-LINGAM; a source node is independent from
regression residuals; does not work if #observations < #variables
(high-dimensions)

» Wang and Drton, 2018: High-dimensional algorithm, exploits relationships
between second and higher order moments of X

O O—@

E[X1 X2]E[X?] — E[XP]E[X? X2] = 0. E[X1 Xo]E[X?] — E[XPIE[X? X2] # 0

generically, in particular, third order
moments need to be non-Gaussian.
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Looking at higher moments

X=0-N"Te

Definition
The linear structural equation model M(3)(G) of second and third order moments
corresponding to a DAG G = (V/, E) with |V| = n is defined as
MEN(G) ={(s=(1-N"TQPU-N,
T=0® e(I-A)"Te(I-AN)"Te(I-A)1):
QD isnxn positive definite diagonal matrix,

Q®isnxnxn diagonal 3-way tensor, and A € RE}.
Here, e denotes the Tucker product.

Theorem (Améndola, Drton, Grosdos, Homs-Pons, and R., 2021+)

The set of second and third order moments (T, S) of a linear non-Gaussian causal model
corresponding to a tree DAG are precisely the ones that satisfy certain quadratic binomials
which arise as the 2 X 2 minors of certain matrices constructed from the DAG.
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v

s;j = 0 for all i,j € V for which there is no 2-trek between i and j;
tijx = 0 for all i, j, k € V for which there is no 2-trek between i, j, k;

the 2 x 2 minors of the matrix A;; are 0 whenever there is a path from i to j,
where

A — Sk Sike tieymy 0 tiggmg
i= | ) . )
Sk Sk Lm0 Liggmg
where
> ki,...,kr are all vertices such that top(i, ki) = top(Jj, ka) and
> (h,m1),...,(lg, mq) are all pairs of vertices such that

tOp(I', I, mb) = tOp(j, I, mb)'
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Introducing hidden variables

R O

X1 =¢

X2 =e

X3 = A3 X2+ €3

Xg = A1a X1+ A2aXo + A3g X3 + &4
X5 = A15X1 + A5 Xy + €5
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Introducing hidden variables

R O

X1 =€

X2 =e

X3 = A3 X2+ €3

Xg = A1a X1+ A2aXo + A3g X3 + &4
X5 = A15X1 + A5 Xy + €5

Y=0U-N"TQU-N1,

0 0 0 A A
0 0 Az Ay O
whereA= [0 0 0 A3 0 | eRrE
0 0 0 0 s
0 0 0 0 0
w11 0 0 0 0
0 w2 0 0 0
Q= 0 0 w33 0 0 € PD.
0 0 0 wy O
0 0 0 0 wss

where A =

Xo =€

X3 = A3 Xo + €3

Xg = AoaXo + A3 Xz + &
X5 = M5 Xy + &

T=(-N"TQU-N,

0 Az Am 0
0 0 A3 O E
) 0 s | €F
0 0 0 0
) 0 0
w33 0 0 < PDB.
0 was  wis
0 was  wWss
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Introducing hidden variables

X1 =¢e1

Xo = A X1+ &2
X3 = A3 X1 +e3
Xy = Aa X1+ &4
X5 = A35X3 + M5 Xg + 5.
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Introducing hidden variables

X1 =¢e1 Xo = és
Xo = A X1+ e X3 =2¢&3
X3 = A3 X1 + €3 Xy = &4
Xo = AuaX1+éea X5 = A35X3 + A5 Xy + €5,

X5 = A35X3 + A5 Xy + 5. where g5 1L &5, &3, &4.
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Introducing hidden variables

X1 =¢e1 Xo = és
Xo = A X1+ e X3 =2¢&3
X3 = A3 X1 + €3 Xy = &4
Xo = AuaX1+éea X5 = A35X3 + A5 Xy + €5,

X5 = A35X3 + A5 Xy + 5. where g5 1L &5, &3, &4.

The new graph G = (V, E, H) has directed edges E and multi-directed edges H.
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Learning LINGAMs with hidden variables from
observational data

Existing methods for learning G = (V, E, H) either
» Use ICA methods (Hoyer et al., 2008), which don’t guarantee convergence to a
global optimum, OR
» Only learn a graph G = (V, E, B) with directed and bidirected edges
(ParcelLINGAM, Tashiro et al., 2014, Wang and Drton, 2020).
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Learning LINGAMs with hidden variables from
observational data

Existing methods for learning G = (V, E, H) either

» Use ICA methods (Hoyer et al., 2008), which don’t guarantee convergence to a
global optimum, OR

» Only learn a graph G = (V, E, B) with directed and bidirected edges
(ParcelLINGAM, Tashiro et al., 2014, Wang and Drton, 2020).

S e!e e""e?a

»> (Liu, Robeva, Wang, 2020): Learn G = (V, E, H), where H has multidirected
edges; G is a bow-free acyclic graph; use high-order cumulant information

VS.

12 /46



Vanishing of cumulants

> For a zero-mean random vector X = (Xi,...,Xy), its k-th order cumulant is an
d x -+ x d (k times) tensor C(k) whose entries can be obtained from the
moments of X, e.g. for k = 4:

i = EIX, X5 Xi, X3, ]-E[X; X3 JE[X, X;, 1~ E[X, X, JE[X;, Xi,1-E[X; X, JE[X;, X;,].

11512513514
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k-treks
Theorem (Robeva and Seby, 2020)

If X comes from a linear non-Gaussian causal model with graph G = (V, E, H) and X has
cumulants C(K) | then
c =0

ity

if and only if there is no k-trek between the vertices i1, ..., ik in G.

» Thus, we can distinguish:

N
O & @ @ & @

e VS. a

3 3
C2(,3),4 #0 Cz( 3) 4=0

I

> Get and algorithm to learn G = (V/, E, H) based on high-order cumulants.
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Learning G = (V, E7 H) [Liu, Robeva, Wang, 2020]

1. Obtain samples Y = (Y1) ... Y(M)) from
LiNGAM with unknown G = (V, E, H)
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LiNGAM with unknown G = (V, E, H)

2. Learn a LINGAM with graph (V, E, B) with

bidirected edges and coefficient matrix A, e.g.

using [Wang and Drton, 2020]

)
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3. "Remove" directed edges E via
X=Y-ATY.
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Learning G = (V, E7 H) [Liu, Robeva, Wang, 2020]

1. Obtain samples Y = (Y1) ... Y(M)) from
LiNGAM with unknown G = (V, E, H)

2. Learn a LINGAM with graph (V, E, B) with
bidirected edges and coefficient matrix A, e.g.

using [Wang and Drton, 2020]

P

3. "Remove" directed edges E via
X=Y-ATY.

5 @
<

4. ldentify the multidirected edges H by
"merging” some of the bidirected edges in
graph (V,0, B) using the cumulants of X.

5. Combine to obtain G = (V, E, H).
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The cyclic case

[Joint work in progress with Mathias Drton, Marina Garrote-Lopez, and Niko Nikov]

» Can we still uniquely learn the graph?

» What algorithms can we use?
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Equivalence classes

» If there are cycles, we cannot learn the graph uniquely.

X1 = A1 Xy +e1, X4:ixl,isl’
As1 Aq
1 1

Xo = A2 X1 + €2, X1 = —Xo — —e2,
A12 A12
Xo = ! X: !

X3 = A3 Xa + €3, 27 s 3_)\72363’

1
X3 = —X4g — —e&4.
Xg = X34 X3 + 4. 3 A34 * A3 N
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Equivalence classes

Theorem (DGNR 2023+)

Two directed graphs G and G’ give rise to the same linear non-Gaussian model if and only if
there exist vertex-disjoint cycles Cy, ..., Cx in G such that

» the directions of the cycles Cy, ..., Cy are reversed in G’, and

> an edge vi — vj where v; ¢ Cs and v; € Cs is in G if and only if v; — vj_1 is in
G', where vj_1 — vj is on the cycle Cs in G.

Example

S0l

5 @ Q)
O—® Gﬁ.ae‘ﬁ

G G’
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Algorithms for learning the graph (and its equivalence
class)

» |CA-based such as [Lacerda, Spirtes, Ramsey, Hoyer, 2012].

> Can we devise a method like [Wang and Drton, 2018]’s for the cyclic case which
will also work in the high-dimensional setting?
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Cyclic graphs

» Strong components: maximal sets of vertices with a directed path between any
two of them.

P> Get a topological ordering of the strong components
> {1,2,3,4},{9,10,11},{5,6,7,8}.
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A specific family of cyclic graphs

» We will only consider graphs whose strong components are simple cycles.
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A specific family of cyclic graphs

» We will only consider graphs whose strong components are simple cycles.

» Note: it is easy to describe all equivalent graphs to such a graph.
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Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2nd and 3rd moments S and T as above

Out: A causal graph G = (V, E), a representative of an equivalence class

22 /46



Proposed recovery algorithm: learning the cycles
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Define for any u,v € V:

s s Suu Suv Svv

d35<2 = det u v 3 d33<3 = det tuuu tuuv tuww
tuwu  tuwv
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Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2nd and 3rd moments S and T as above

Out: A causal graph G = (V, E), a representative of an equivalence class

Define for any u,v € V:

s s Suu Suv Svv

d3\3<2 = det u v 3 d33<3 = det tuuu tuuv tuww
tuwu  tuwv

tuu\/ tUVV t\/VV

Step 1: Compute d35<2, d3,f<3 for all u,v € V.

Step 2:
G={reV:d*=d3*=0forallveV}

Lemma: C; consists of all root nodes.

Step 3: Regress V' \ C1 on C1. Return to Step 1 and
repeat Steps 1-3 until C; is empty.
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Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2nd and 3rd moments S and T as above

Out: A causal graph G = (V, E), a representative of an equivalence class

Define for any u,v € V:

s s Suu Suv Sw
d3‘72 = det ( uu t uv) d3;<3 = det tuuu tuuv tuvv
uuu uuv
tuuv tUVV t\/VV
1N
1
Step 1: Compute dgvxz, d3;<3 for all u,v € V. N o
Step 2: ° °° P
G={reV:d?=d3*=0forallveV} °
Lemma: C; consists of all root nodes. °
Step 3: Regress V' \ C1 on C1. Return to Step 1 and @ e

repeat Steps 1-3 until C; is empty. e o
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Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2nd and 3rd moments S and T as above

Out: A causal graph G = (V, E), a representative of an equivalence class

Define for any u,v € V:

s s Suu Suv Sw
dl%\;<2 = det u v ) d3;<3 = det tuuu tuuv tuw
tLIUU tULIV
tuuv tUVV t\/VV
Step 1: Compute dgvxz, d3;<3 for all u,v € V. o
OO A
G={reV:d?=d3*=0forallveV} °
Lemma: C; consists of all root nodes. °
Step 3: Regress V' \ C1 on C1. Return to Step 1 and @ e

repeat Steps 1-3 until C; is empty. e o
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Proposed recovery algorithm: learning the cycles

Step 4: C} = collection of all maximal C C V such that da;® = 0, d2® # 0 for all
u,v € C. Prune C} to obtain Cs.

Lemma: C> consists of all root cycles.
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Proposed recovery algorithm: learning the cycles

Step 4: C} = collection of all maximal C C V such that da;® = 0, d2® # 0 for all
u,v € C. Prune C} to obtain C.
Lemma: C> consists of all root cycles.

Step 5: Regress the rest of the vertices on C2. Return to Step 2.
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Proposed recovery algorithm: learning the cycles

Step 4: Cé = collection of all maximal C C V such that d33<3 d2><2 # 0 for all
u,v € C. Prune C} to obtain C.
Lemma: C» consists of all root cycles.

Step 5: Regress the rest of the vertices on Cy. Return to Step 2.
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Proposed recovery algorithm

We know: the cycles and a topological ordering:

{1},{2,3,4},{11},{12},{5,6,7},{8,9,10}.

Step 6: Learn ancestry relationships among cycles:

use regression backwards in topological order.
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We know: the cycles and a topological ordering:

{1},{2,3,4},{11},{12},{5,6,7},{8,9,10}.

Step 6: Learn ancestry relationships among cycles:

use regression backwards in topological order.

31/46



Proposed recovery algorithm

We know: the cycles and a topological ordering:

{1},{2,3,4},{11},{12},{5,6,7}, {8, 9, 10}.

Step 6: Learn ancestry relationships among cycles:
use regression backwards in topological order.

Step 7: Starting from the source nodes/cycles,
learn the edges and their weights.
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Proposed recovery algorithm

We know: the cycles and a topological ordering:
{1},{2,3,4},{11},{12},{5,6,7},{8,9, 10}.

Step 6: Learn ancestry relationships among cycles:
use regression backwards in topological order.

Step 7: Starting from the source nodes/cycles,
learn the edges and their weights.

» Learn the skeleton for each root cycle by using conditional independence.
» Turn all root cycles into root nodes by "undoing them”.

> Learn edges/weights between cycles.
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"Undoing” a root cycle

Lemma:

> If the cycle length is at least 3, then there is a linear equation in Ag1
p(sij7 tijk : i7j7 k€ {07 172}))‘01 = q(sij7 tfjk : i7.j7 k € {07 172})7

where p(sjj, ik : i,j, k € {0,1,2}) is nonzero with probability 1. Thus, we can
compute A\g1 uniquely.

> If the cycle length is 2, there is a quadratic equation
p(sij, tir)A51 + a(sis tijk)Xo,1 + r(sij,ey) = 0.

with p(sj, tji) nonzero. Thus, there are two solutions for Ao;.
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Learning edges/weights between cycles

S
0*0 )

» Regress on all parent nodes and take residuals.
» Learn edge weights on cycle.

» From regression coefficients, learn edge weights from parent nodes to cycle.
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Learning edges/weights between cycles
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» Regress on all parent nodes and take residuals.
» Learn edge weights on cycle.

» From regression coefficients, learn edge weights from parent nodes to cycle.
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Learning edges/weights between cycles

» Regress on all parent nodes and take residuals.
» Learn edge weights on cycle.

» From regression coefficients, learn edge weights from parent nodes to cycle.
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Learning edges/weights between cycles

> Regress on all (possible) parent nodes and take residuals.
> Learn edge weights on cycle.

» From regression coefficients, learn edge weights from parent nodes to cycle.
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Proposed algorithm: learning edges and edge weights
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Proposed algorithm: learning edges and edge weights
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Proposed algorithm: learning edges and edge weights
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Proposed algorithm: learning edges and edge weights
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Proposed algorithm: learning edges and edge weights
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Proposed algorithm: learning edges and edge weights
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Further questions

Implement algorithm and compare with others
Compute sample size complexity

Extend to all cyclic graphs

vyvyyvyy

More algebraic constraints that can be used?
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Thank you!

@ C. Améndola, M. Drton, A. Grosdos, R. Homs-Pons, and E. Robeva. Third-order moment varieties of
non-Gaussian graphical models. Information and Inference (2023)

M. Drton, M. Garrote-Lopéz, N. Nikov, and E. Robeva. Learning cyclic linear non-Gaussian causal models
via algebraic constraints. In preparation

Y. Liu, E. Robeva, and H. Wang. Learning Linear Non-Gaussian Graphical Models with Multidirected Edges.
Journal of Causal Inference (2021)

B B

E. Robeva and J.B. Seby. Multi-trek Separation in Linear Structural Equation Models. SIAM Journal on
Applied Algebra and Geometry (SIAGA) (2021)
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More algebraic constraints

> (Robeva, Seby, 2020): Characterize vanishing of determinants of subtensors of
k-th cumulant tensor C(%) in a LINGAM with graph G = (V, E, H);

det(C) ,)=0
if and only if every system of k-treks between Aj, ..., A has a sided

intersection.

Here:

d
det(T) = > sign(2) - - - sign(ow) [ | Tr,on(),.. 0u(i)

02,...,0,€6(d) i=1

is the combinatorial hyperdeterminant.
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More algebraic constraints

> (Robeva, Seby, 2020): Characterize vanishing of determinants of subtensors of
k-th cumulant tensor C(%) in a LINGAM with graph G = (V, E, H);

det(C) ,)=0

if and only if every system of k-treks between Aj, ..., A has a sided
intersection.

Here:

d
det(T) = > sign(2) - - - sign(ow) [ | Tr,on(),.. 0u(i)

02,...,0,€6(d) i=1

is the combinatorial hyperdeterminant.

» Can we learn such relationships in the case of both cycles and hidden variables?
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