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Causal models

Gene regulatory networks Disease diagnosis graphs

How can we learn the structure of these graphs from observations?
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Structural causal models

Definition
A structural causal model consists of a directed acyclic graph (DAG) G = (V ,E), and
a set of equations/assignments between the random variables {Xv : v ∈ V }:

Xv = fv (Xpa(v), εv ), v ∈ V

where Xpa(v) = (Xu : u → v ∈ E) and εv is noise such that {εv : v ∈ V } are independent
noise terms.
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4 5

X1 = f1(ε1)

X2 = f2(ε2)

X3 = f3(X2, ε3)

X4 = f4(X1,X2,X3, ε4)

X5 = f5(X1,X4, ε5).

Given samples X (1), . . . ,X (n) ∈ R|V | arising from such a model, can we identify G?

I Linear structural equation models
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Linear structural equation models

2

3

1

4 5

X1 = ε1

X2 = ε2

X3 = λ23X2 + ε3

X4 = λ14X1 + λ24X2 + λ34X3 + ε4

X5 = λ15X1 + λ45X4 + ε5.

For a general directed acyclic graph G = (V ,E), the linear structural equation model
corresponding to G consists of the the graph G and the linear equations

Xi =
∑

j∈pa(i)

λjiXj + εi , where the variables {εi}i∈V are independent.

In matrix-vector form
X = ΛTX + ε.

Equivalently,
X = (I − Λ)−T ε.
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Linear Gaussian models

Xi =
∑

j∈pa(i)

λjiXj + εi , where ε ∼ N (ν,Ω), and Ω = diag(ω1, . . . , ωn),

X = (I − Λ)−T ε.

Thus, X ∼ N (µ,Σ), where

Σ = (I − Λ)−T Ω(I − Λ)−1.

The set of distributions MG arising from a Gaussian linear causal model with DAG
G = (V ,E) is called the directed Gaussian graphical model corresponding to G , and

MG = {Σ : Σ = (I − Λ)−T Ω(I − Λ)−1, Λ ∈ RE ,Ω � 0 diagonal}.

2

3

1

4 5

Σ = (I − Λ)−T Ω(I − Λ)−1
, where

Λ =


0 0 0 λ14 λ15
0 0 λ23 λ24 0
0 0 0 λ34 0
0 0 0 0 λ45
0 0 0 0 0

, Ω =


ω11 0 0 0 0

0 ω22 0 0 0
0 0 ω33 0 0
0 0 0 ω44 0
0 0 0 0 ω55

 .

I Markov equivalence: MG =MH =⇒ cannot identify the graph G uniquely.
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Non-Gaussian Linear Structural Equation Models

Given a DAG G = (V ,E),

X = (I − Λ)−T ε, where the {εv}v∈V are independent and Λ ∈ RE .

I Independent component analysis: Given X = Aε, where ε is a vector of
independent components, want to recover A,

. . . up to permutation and scaling of its columns.

I If at least two εj are Gaussian, then recovering A uniquely is impossible.

Theorem (Comon and Jutten, Handbook of Blind Source Separation, 2010)
If all (or all but one) εj are non-Gaussian, A can be recovered (up to permutation
and scaling).

I ICA Methods: maximum likelihood estimation, 4th order cumulant tensor
decomposition, maximizing |kurtosis| of A−1X (a measure of non-Gaussianity)
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Linear Non-Gaussian Acyclic Models (LiNGAM)

X = (I − Λ)−T ε.

I Shimizu et al., 2006: LiNGAM; use ICA methods; estimate of (I − Λ) has all
entries non-zero

I Shimizu et al., 2011: Direct-LiNGAM; a source node is independent from
regression residuals; does not work if #observations < #variables
(high-dimensions)

I Wang and Drton, 2018: High-dimensional algorithm, exploits relationships
between second and higher order moments of X

1 2

E[X1X2]E[X 3
1 ]− E[X 2

1 ]E[X 2
1 X2] = 0.

1 2

E[X1X2]E[X 3
1 ]− E[X 2

1 ]E[X 2
1 X2] 6= 0

generically, in particular, third order
moments need to be non-Gaussian.
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Looking at higher moments

X = (I − Λ)−T ε.

Definition
The linear structural equation model M(2,3)(G) of second and third order moments
corresponding to a DAG G = (V ,E) with |V | = n is defined as

M(2,3)(G) = {(S = (I − Λ)−T Ω(2)(I − Λ)−1,

T = Ω(3) • (I − Λ)−1 • (I − Λ)−1 • (I − Λ)−1) :

Ω(2) is n × n positive definite diagonal matrix,

Ω(3) is n × n × n diagonal 3-way tensor, and Λ ∈ RE}.

Here, • denotes the Tucker product.

Theorem (Améndola, Drton, Grosdos, Homs-Pons, and R., 2021+)
The set of second and third order moments (T , S) of a linear non-Gaussian causal model
corresponding to a tree DAG are precisely the ones that satisfy certain quadratic binomials
which arise as the 2× 2 minors of certain matrices constructed from the DAG.

8 / 46



I sij = 0 for all i , j ∈ V for which there is no 2-trek between i and j ;

I tijk = 0 for all i , j , k ∈ V for which there is no 2-trek between i , j , k;

I the 2× 2 minors of the matrix Aij are 0 whenever there is a path from i to j ,
where

Aij =

[
sik1

· · · sikr ti`1m1
· · · ti`qmq

sjk1
· · · sjkr tj`1m1

· · · tj`qmq

]
,

where
I k1, . . . , kr are all vertices such that top(i , ka) = top(j , ka) and
I (l1,m1),. . . ,(lq ,mq) are all pairs of vertices such that

top(i , lb,mb) = top(j , lb,mb).
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Introducing hidden variables

2

3

1

4 5

X1 = ε1

X2 = ε2

X3 = λ23X2 + ε3

X4 = λ14X1 + λ24X2 + λ34X3 + ε4

X5 = λ15X1 + λ45X4 + ε5

2

3 4 5

G = (V,E,B)

X2 = ε2

X3 = λ23X2 + ε3

X4 = λ24X2 + λ34X3 + ε̃4

X5 = λ45X4 + ε̃5

Σ = (I − Λ)−T Ω(I − Λ)−1,

where Λ =


0 0 0 λ14 λ15
0 0 λ23 λ24 0
0 0 0 λ34 0
0 0 0 0 λ45
0 0 0 0 0

 ∈ RE ,

Ω =


ω11 0 0 0 0

0 ω22 0 0 0
0 0 ω33 0 0
0 0 0 ω44 0
0 0 0 0 ω55

 ∈ PD.

Σ = (I − Λ)−T Ω(I − Λ)−1,

where Λ =


0 λ23 λ24 0
0 0 λ34 0
0 0 0 λ45
0 0 0 0

 ∈ RE ,

Ω =


ω22 0 0 0

0 ω33 0 0
0 0 ω44 ω45
0 0 ω45 ω55

 ∈ PDB .
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Introducing hidden variables

1

2 3 4

5

X1 = ε1

X2 = λ12X1 + ε2

X3 = λ13X1 + ε3

X4 = λ14X1 + ε4

X5 = λ35X3 + λ45X4 + ε5.

2 3 4

5

X2 = ε̃2

X3 = ε̃3

X4 = ε̃4

X5 = λ35X3 + λ45X4 + ε5,

where ε5 ⊥⊥ ε̃2, ε̃3, ε̃4.

The new graph G = (V ,E ,H) has directed edges E and multi-directed edges H.
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Learning LiNGAMs with hidden variables from
observational data

Existing methods for learning G = (V ,E ,H) either

I Use ICA methods (Hoyer et al., 2008), which don’t guarantee convergence to a
global optimum, OR

I Only learn a graph G = (V ,E ,B) with directed and bidirected edges
(ParcelLiNGAM, Tashiro et al., 2014, Wang and Drton, 2020).

2 3 4

5

vs.

2 3 4

5

I (Liu, Robeva, Wang, 2020): Learn G = (V ,E ,H), where H has multidirected
edges; G is a bow-free acyclic graph; use high-order cumulant information
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Vanishing of cumulants

I For a zero-mean random vector X = (X1, . . . ,Xd ), its k-th order cumulant is an
d × · · · × d (k times) tensor C (k) whose entries can be obtained from the
moments of X , e.g. for k = 4:

C
(4)
i1,i2,i3,i4

= E[Xi1Xi2Xi3Xi4 ]−E[Xi1Xi2 ]E[Xi3Xi4 ]−E[Xi1Xi3 ]E[Xi2Xi4 ]−E[Xi1Xi4 ]E[Xi2Xi3 ].

Theorem (Robeva and Seby, 2020)
If X comes from a linear non-Gaussian acyclic model with graph G = (V ,E ,H) and X has
cumulants C (k), then

C
(k)
i1,...,ik

= 0

if and only if there is no k-trek between the vertices i1, . . . , ik in G .

i1

i2

i3

i4

v

i1

i2

i3

i4

v1

v3

v4
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k-treks

Theorem (Robeva and Seby, 2020)
If X comes from a linear non-Gaussian causal model with graph G = (V ,E ,H) and X has
cumulants C (k), then

C
(k)
i1,...,ik

= 0

if and only if there is no k-trek between the vertices i1, . . . , ik in G .

I Thus, we can distinguish:

2 3 4

5
vs.

2 3 4

5

C
(3)
2,3,4 6= 0 C

(3)
2,3,4 = 0.

I Get and algorithm to learn G = (V ,E ,H) based on high-order cumulants.
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Learning G = (V ,E ,H) [Liu, Robeva, Wang, 2020]

1. Obtain samples Y = (Y (1), . . . ,Y (N)) from
LiNGAM with unknown G = (V ,E ,H)

2. Learn a LiNGAM with graph (V ,E ,B) with
bidirected edges and coefficient matrix Λ, e.g.
using [Wang and Drton, 2020]

3. ”Remove” directed edges E via
X = Y − ΛTY .

4. Identify the multidirected edges H by
”merging” some of the bidirected edges in
graph (V , ∅,B) using the cumulants of X .

5. Combine to obtain G = (V ,E ,H).
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The cyclic case

[Joint work in progress with Mathias Drton, Marina Garrote-Lopez, and Niko Nikov]

I Can we still uniquely learn the graph?

I What algorithms can we use?
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Equivalence classes

I If there are cycles, we cannot learn the graph uniquely.

1 2

34

1 2

34

X1 = λ41X4 + ε1,

X2 = λ12X1 + ε2,

X3 = λ23X2 + ε3,

X4 = λ34X3 + ε4.

X4 =
1

λ41
X1 −

1

λ41
ε1,

X1 =
1

λ12
X2 −

1

λ12
ε2,

X2 =
1

λ23
X3 −

1

λ23
ε3,

X3 =
1

λ34
X4 −

1

λ34
ε4.
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Equivalence classes

Theorem (DGNR 2023+)
Two directed graphs G and G ′ give rise to the same linear non-Gaussian model if and only if
there exist vertex-disjoint cycles C1, . . . ,Ck in G such that

I the directions of the cycles C1, . . . ,Ck are reversed in G ′, and

I an edge vi → vj where vi 6∈ Cs and vj ∈ Cs is in G if and only if vi → vj−1 is in
G ′, where vj−1 → vj is on the cycle Cs in G .

Example

1

2

3

4

5 6

7

8

1

2

3

4

5 6

7

8

G G ′
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Algorithms for learning the graph (and its equivalence
class)

I ICA-based such as [Lacerda, Spirtes, Ramsey, Hoyer, 2012].

I Can we devise a method like [Wang and Drton, 2018]’s for the cyclic case which
will also work in the high-dimensional setting?
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Cyclic graphs

1

2

4

5

6

7

8

9 10

11

3

I Strong components: maximal sets of vertices with a directed path between any
two of them.

I Get a topological ordering of the strong components

I {1, 2, 3, 4}, {9, 10, 11}, {5, 6, 7, 8}.
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A specific family of cyclic graphs

I We will only consider graphs whose strong components are simple cycles.

1

2

4

5

6

7

8

9 10

11

3

I Note: it is easy to describe all equivalent graphs to such a graph.
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Proposed recovery algorithm: learning the cycles

In: A random vector on n components with 2nd and 3rd moments S and T as above

Out: A causal graph G = (V ,E), a representative of an equivalence class

Define for any u, v ∈ V :

d2×2
uv = det

(
suu suv
tuuu tuuv

)
, d3×3

uv = det

 suu suv svv
tuuu tuuv tuvv
tuuv tuvv tvvv



Step 1: Compute d2×2
uv , d3×3

uv for all u, v ∈ V .

Step 2:
C1 = {r ∈ V : d2×2

rv = d3×3
rv = 0 for all v ∈ V }.

Lemma: C1 consists of all root nodes.

Step 3: Regress V \ C1 on C1. Return to Step 1 and
repeat Steps 1-3 until C1 is empty.
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Proposed recovery algorithm: learning the cycles

Step 4: C′2 = collection of all maximal C ⊆ V such that d3×3
uv = 0, d2×2

uv 6= 0 for all
u, v ∈ C . Prune C′2 to obtain C2.

Lemma: C2 consists of all root cycles.

Step 5: Regress the rest of the vertices on C2. Return to Step 2.
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Proposed recovery algorithm

We know: the cycles and a topological ordering:

{1}, {2, 3, 4}, {11}, {12}, {5, 6, 7}, {8, 9, 10}.

Step 6: Learn ancestry relationships among cycles:
use regression backwards in topological order.

Step 7: Starting from the source nodes/cycles,
learn the edges and their weights.

Step 8: Learn the skeleton for each cycle by using conditional independence.

Step 9: Turn all root cycles into root nodes by ”undoing them”.
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”Undoing” a root cycle

1

2

0

λ01
λ12

Lemma:

I If the cycle length is at least 3, then there is a linear equation in λ01

p(sij , tijk : i , j , k ∈ {0, 1, 2})λ01 = q(sij , tijk : i , j , k ∈ {0, 1, 2}),

where p(sij , tijk : i , j , k ∈ {0, 1, 2}) is nonzero with probability 1. Thus, we can
compute λ01 uniquely.

I If the cycle length is 2, there is a quadratic equation

p(sij , tijk )λ2
01 + q(sij , tijk )λ0,1 + r(sij,tijk ) = 0.

with p(sij , tijk ) nonzero. Thus, there are two solutions for λ01.
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Learning edges/weights between cycles

0

1
2

3

4

5

67

I Regress on all parent nodes and take residuals.

I Learn edge weights on cycle.

I From regression coefficients, learn edge weights from parent nodes to cycle.
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Learning edges/weights between cycles

0

1
2

3

4

5

67

I Regress on all (possible) parent nodes and take residuals.

I Learn edge weights on cycle.

I From regression coefficients, learn edge weights from parent nodes to cycle.
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Proposed algorithm: learning edges and edge weights
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Proposed algorithm: learning edges and edge weights
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Proposed algorithm: learning edges and edge weights
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Further questions

I Implement algorithm and compare with others

I Compute sample size complexity

I Extend to all cyclic graphs

I More algebraic constraints that can be used?
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Thank you!

C. Améndola, M. Drton, A. Grosdos, R. Homs-Pons, and E. Robeva. Third-order moment varieties of

non-Gaussian graphical models. Information and Inference (2023)

M. Drton, M. Garrote-Lopéz, N. Nikov, and E. Robeva. Learning cyclic linear non-Gaussian causal models

via algebraic constraints. In preparation

Y. Liu, E. Robeva, and H. Wang. Learning Linear Non-Gaussian Graphical Models with Multidirected Edges.

Journal of Causal Inference (2021)

E. Robeva and J.B. Seby. Multi-trek Separation in Linear Structural Equation Models. SIAM Journal on

Applied Algebra and Geometry (SIAGA) (2021)
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More algebraic constraints

I (Robeva, Seby, 2020): Characterize vanishing of determinants of subtensors of
k-th cumulant tensor C (k) in a LiNGAM with graph G = (V ,E ,H);

det(C
(k)
A1,...,Ak

) = 0

if and only if every system of k-treks between A1, . . . ,Ak has a sided
intersection.

Here:

det(T ) =
∑

σ2,...,σk∈S(d)

sign(σ2) · · · sign(σk )
d∏

i=1

Ti,σ2(i),...,σk (i)

is the combinatorial hyperdeterminant.

I Can we learn such relationships in the case of both cycles and hidden variables?
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