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THE PROBLEM OF CAUSAL INFERENCE

Determining the causal structure between several random variables from observational data
is a central task in many disciplines including computational biology, epidemiology,
sociology, and economics.

The causal structure is often modeled by a directed graph, where the vertices correspond to
the variables of interest, and the directed edges represent the direct causal effects those
variables have on one another.

One of the simplifying assumptions is that the directed graph is acyclic. However, in many
realistic settings, directed cycles do exist (e.g., gene regulatory networks, climate science,
social sciences, feedback systems in electrical engineering, and economic processes).
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OUR SETTING AND APPROACH

We assume we have observed some i.i.d. samples of a distribution P in the graphical model
of and faithful to a directed graph G⋆ = (V ⋆, E⋆) and have inferred all the conditional
independence statements satisfied by this distribution.

We assume that we have no latent variables. So, V ⋆ = {1, . . . , n}, where n is the number
of the observed variables.

Graph G⋆ may have directed cycles and we work in the fully non-parametric setting.
Our goal is to

1 recover the structures present in all the Markov equivalent graphs to G⋆ which uniquely determine
this Markov equivalence class, and

2 recover a graph in the Markov equivalence graph of G⋆ using these structures.

Our approach is an extension of the hybrid approach in the acyclic setting [Teyssie and
Koller 2005 / Raskutti and Uhler 2018 / ...] to the cyclic setting.

Previously other algorithms have been proposed which allow for cyclic graphs and have no
parametric assumptions [Richardson 2013 / Hyttinen, Hoyer, Eberhardt and Jarvisalo 2013],
however, they only output characteristics that are shared by all of the members of the
Markov equivalence class of G⋆.
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PARTIALLY ORDERED PARTITIONS

Consider the following equivalence relation on [n]: For all i, j ∈ [n],

i ∼ j ⇐⇒ There is a directed path from i to j and a directed path

from j to i in G⋆, or i = j.

The equivalence relation ∼ gives rise to a partition on [n], each section of which is called a
strongly connected component of G⋆. This partition is denoted by SC(G⋆).

Consider the following relation on SC(G⋆): For all C1, C2 ∈ SC(G⋆),

C1 ≤G⋆ C2 ⇐⇒ There is a directed path from any vertex in C1

to any vertex in C2 in G⋆, or C1 = C2.

(SC(G⋆),≤G⋆ ) is called the partially ordered partition associated with G⋆.
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FIGURE: G⋆

the partially ordered partition associated with
G⋆ is

the partition {{1, 2, 3, 4}, {5, 6, 7}, {8, 9}},

the partial order
{5, 6, 7} ≤G⋆ {1, 2, 3, 4};
{5, 6, 7} ≤G⋆ {8, 9}.
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We find the Markov equivalence class of G⋆ by optimizing a certain score over the set

S :=
{
(P, π)

∣∣∣ P ⊆ 2[n] is a partition of [n] and π ⊆ P × P is a partial order on P.
}
.
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CHARACTERIZATION OF MARKOV EQUIVALENCE

THEOREM [VERMA AND PEARL 1990]

Two DAGs G1 and G2 are Markov equivalent if and only if they have the same adjacencies and
the same set of immoralities.

a

a

b

b

(A) Adjaceny

a c

b

(B) Immorality

This characterization does not hold for all directed graphs:

a ab b c

d d

c

FIGURE: These two graphs have the same adjacencies and immoralities, but a ̸⊥⊥ c in the first graph, and
a ⊥⊥ c in the second one.
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CHARACTERIZATION OF MARKOV EQUIVALENCE

THEOREM [RICHARDSON 1997]

Assume G1 = (V,E1) and G2 = (V,E2) are two directed graphs. Then G1 and G2 are Markov
equivalent if and only if the following conditions hold:

1 G1 and G2 have the same p-adjacencies.
2 G1 and G2 have the same set of unshielded non-conductors.
3 G1 and G2 have the same set of unshielded imperfect non-conductors.
4 If (a, b1, c) and (a, b2, c) are unshielded imperfect non-conductors (in G1 and G2), then b1

is an ancestor of b2 in G1 if and only if b1 is an ancestor of b2 in G2.
5 For any t ∈ N, triples (a0, a1, a2) and (at−1, at, at+1) are mutually exclusive with respect to

the uncovered itinerary P = (a0, a1, a2, . . . , at−1, at, at+1) in G1 if and only if (a0, a1, a2)
and (at−1, at, at+1) are mutually exclusive with respect to P in G2.

6 If (a0, a1, a2) and (at−1, at, at+1) are mutually exclusive with respect to some uncovered
itinerary (a0, a1, . . . , at+1) and (a0, b1, at+1) is an unshielded imperfect non-conductor (in
G1 and G2), then a1 is an ancestor of b in G1 if and only if a1 is an ancestor of b in G2.
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CONDITION 1

G1 and G2 have the same p-adjacencies.

a b

a b

a b

adjacency

ancestorship

Let G = (V,E) be a directed graph. Two vertices a, b ∈ V
are said to be p-adjacent if

(a, b) ∈ E, or

(b, a) ∈ E, or

a and b have a common child in G, which is an
ancestor of a or b.
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b

a

b
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FIGURE: P-adjacency

PROPOSITION

For each (P, π) ∈ S, let

E
(1)
(P,π)

:=
{
(a, b) ∈ [n]2

∣∣∣ a ̸= b, a ̸⊥⊥ b |
⋃{

C ∈ P
∣∣ C ≤π max{Ca,P , Cb,P}

}
\ {a, b}

}
.

Also, define S1 := argmin(P,π)∈S

∣∣∣E(1)
(P,π)

∣∣∣. Then

the partially ordered partition associated with G⋆ is in S1, and

for every (P, π) ∈ S1, the set E(1)
(P,π)

is equal to the set of p-adjacencies in G⋆.
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∣∣ C ≤π max{Ca,P , Cb,P}

}
\ {a, b}

}
.

Also, define S1 := argmin(P,π)∈S

∣∣∣E(1)
(P,π)

∣∣∣. Then

the partially ordered partition associated with G⋆ is in S1, and

for every (P, π) ∈ S1, the set E(1)
(P,π)

is equal to the set of p-adjacencies in G⋆.
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CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
non-conductor if

a, c are not p-adjacent,

a, b and c, b are p-adjacent, and

b is not an ancestor of a or c.

6 / 15



CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
non-conductor if

a, c are not p-adjacent,

a, b and c, b are p-adjacent, and

b is not an ancestor of a or c.

6 / 15



CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
non-conductor if

a, c are not p-adjacent,

a, b and c, b are p-adjacent, and

b is not an ancestor of a or c.

6 / 15



CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
non-conductor if

a, c are not p-adjacent,

a, b and c, b are p-adjacent, and

b is not an ancestor of a or c.

6 / 15



CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
non-conductor if

a, c are not p-adjacent,

a, b and c, b are p-adjacent, and

b is not an ancestor of a or c.

6 / 15



CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
non-conductor if

a, c are not p-adjacent,

a, b and c, b are p-adjacent, and

b is not an ancestor of a or c.

6 / 15



CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
non-conductor if

a, c are not p-adjacent,

a, b and c, b are p-adjacent, and

b is not an ancestor of a or c.

6 / 15



CONDITION 2

G1 and G2 have the same set of unshielded non-conductors.

b

a c p-adjaceny

ancestorship

FIGURE: Unshielded non-conductor

PROPOSITION

For each (P, π) ∈ S, let

E
(2)
(P,π)

:=
{
(a, b, c) ∈ [n]3 | a, b, c are distinct, (a, b), (c, b) ∈ E

(1)
(P,π)

, (a, c) ̸∈ E
(1)
(P,π)

,

Cb,P ̸≤π Ca,P , Cb,P ̸≤π Cc,P
}
.

Also, define S2 := argmax(P,π)∈S1

∣∣∣E(2)
(P,π)

∣∣∣. Then

the partially ordered partition associated with G⋆ is in S2, and

for every (P, π) ∈ S2, the set E(2)
(P,π)

is equal to the set of unshielded non-conductors in G⋆.
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OTHER INGREDIENTS FOR DEFINING THE SCORE

E
(3)
(P,π)

:=
{
(a, b, c) ∈ [n]3 | (a, b, c) ∈ E

(2)
(P,π)

,

a ⊥⊥ c |
⋃{

C ∈ P
∣∣ C ≤π max{Ca,P , Cb,P , Cc,P

}
} \ {a, c}

}
.

E
(4)
(P,π)

:=
{
((a, b1, c), (a, b2, c)) ∈ [n]3 × [n]3 | (a, b1, c), (a, b2, c) ∈ E

(3)
(P,π)

Cb1,P ≤π Cb2,P
}
.

For all t ∈ [n− 2],

D
(t)
(P,π)

:=
{
(a0, a1, . . . , at, at+1) ∈ [n]t+2 | a0, a1, . . . , at+1 are distinct,

(ai, ai−1) ∈ E
(1)
(P,π)

∀ i ∈ [t+ 1],

(ai, aj) ̸∈ E
(1)
(P,π)

∀ i ∈ {2, . . . , t+ 1}, j ≤ i− 2,

Ca1,P = Ca2,P = · · · = Cat,P ,

Ca1,P ̸≤π Ca0,P , Ca1,P ̸≤π Cat+1,P}
}
.
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OTHER INGREDIENTS FOR DEFINING THE SCORE

E
(6)
(P,π)

:=

n−2⋃
t=1

{
(a0, a1, . . . , at, at+1, a0, b, at+1) ∈ [n]t+5 | (a0, b, at+1) ∈ E

(3)
(P,π)

(a0, a1, . . . , at, at+1) ∈ D
(t)
(P,π)

,

Ca1,P ≤π Cb,P
}
.
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GRAPHICAL SCORE

For a given set of conditional independence statements and for any (P, π) ∈ S, we define
the graphical score of (P, π), denoted by GS(P, π), to be

GS(P, π) :=

( ∣∣∣E(1)
(P,π)

∣∣∣ ,− ∣∣∣E(2)
(P,π)

∣∣∣ ,− ∣∣∣E(3)
(P,π)

∣∣∣ , ∣∣∣E(4)
(P,π)

∣∣∣ ,
−
∣∣∣D(2)

(P,π)

∣∣∣ , · · · ,− ∣∣∣D(n−2)
(P,π)

∣∣∣ , ∣∣∣E(6)
(P,π)

∣∣∣ ).

The graphical score is a vector in Zn+2.

Equipping Zn+2 with the lexicographical order allows us to compare the graphical scores of
different partially ordered partitions.

THEOREM

Each minimizer of the graphical score over S, uniquely determines the Markov equivalence class
of G⋆.
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GRAPH OF THE PARTIALLY ORDERED PARTITIONS

Consider the graph G = (S, E), where ((P1, π1), (P2, π2)) ∈ E iff GS(P1, π1) ≥ GS(P2, π2) and

P1 = P2, π1 ⊊ π2, and |π2 \ π1| = 1.

P1 = P2, π2 ⊊ π1, and |π1 \ π2| = 1.
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There exists a consecutive pair (C1, C2) in (P1, π1) and a ∈ C1 such that
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Consider the graph G = (S, E), where ((P1, π1), (P2, π2)) ∈ E iff GS(P1, π1) ≥ GS(P2, π2) and

There exists Ĉ ∈ P1 and a ∈ Ĉ such that
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OPTIMIZATION ALGORITHM

Based on experimental evidence, we conjecture that for any (P, π) ∈ S, there exist an optimal
partially ordered partition (P0, π0) and a directed path in G such that the path starts from (P, π)
and ends at (P0, π0).
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GREEDY OPTIMIZATION ALGORITHM

Once this algorithm finds an optimal partially ordered partition (P̂, π̂), it needs to perform a
full depth-first search on G with root (P̂, π̂) before it makes sure that there is no partially
ordered partition with a lower score.

This makes the algorithm impractical because the number of optimal partially ordered
partitions can be large.

In practice, we perform a greedy version of this algorithm, where we stop the depth-first
search as soon as a directed path of length N consisting of partially ordered partitions with
the same score is observed, where N is a threshold given to the algorithm as an input.

One can choose to repeat the algorithm M times with M different initial partially ordered
partitions to get better results, where M is also part of the input.
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SIMULATIONS

Random graphs were generated according to the Erdős–Rényi model and using the R
library igraph. The set of all d-separations satisfied by each graph was then generated
and given to this algorithm as part of its input.

We used the following initial partially ordered partitions (M = 3):

P1 = {{1, . . . , n}} ,

P2 =
{{

1, . . . ,
⌊n
2

⌋}
,
{⌊n

2

⌋
+ 1, . . . , n

}}
,
{
1, . . . ,

⌊n
2

⌋}
≤π2

{⌊n
2

⌋
+ 1, . . . , n

}
,

P3 = {{1}, {2}, . . . , {n}} .

The positive integers N used in our experiments were the following:

number of vertices of the graph (n) N

7 30
8 30
9 40

10 50
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library igraph. The set of all d-separations satisfied by each graph was then generated
and given to this algorithm as part of its input.

We used the following initial partially ordered partitions (M = 3):

P1 = {{1, . . . , n}} ,

P2 =
{{

1, . . . ,
⌊n
2

⌋}
,
{⌊n

2

⌋
+ 1, . . . , n

}}
,
{
1, . . . ,

⌊n
2

⌋}
≤π2

{⌊n
2

⌋
+ 1, . . . , n

}
,

P3 = {{1}, {2}, . . . , {n}} .

The positive integers N used in our experiments were the following:

number of vertices of the graph (n) N

7 30
8 30
9 40

10 50

12 / 15



SIMULATIONS
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FIGURE: Results of running the greedy optimization algorithm on 120 random graphs with 7 vertices and
different levels of sparsity. Thirty graphs were tested for each of the probabilities 0.2, 0.4, 0.6, and 0.8. From
left to right, the success rates are 0.93, 0.97, 1 and 1.
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FIGURE: Results of running the greedy optimization algorithm on 120 random graphs with different numbers of
vertices n where each edge appears in the graph with probability 0.3. Thirty graphs were tested for each n.
From left to right, the success rates are 0.90, 0.93, 0.97 and 0.93.
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RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

THEOREM

Suppose that (P, π) is an optimal partially ordered partition, and G = ([n], E) is a directed graph
with the following properties:

1 For all (a, b) ∈ [n]2, a and b are p-adjacent in G if and only if (a, b) ∈ E
(1)
(P,π)

.

2 For all (a, b) ∈ [n]2, a is an ancestor of b in G if and only if Ca,P ≤π Cb,P .

3 If (a, b, c) ∈ E
(2)
(P,π)

\E(3)
(P,π)

and for all b′ ∈ [n] with Cb′,P <π Cb,P and (a, b′, c) ∈ E
(2)
(P,π)

,

(a, b′, c) ∈ E
(3)
(P,π)

, then a and c have a common child in Cb,P in graph G.

4 If (a, b, c) ∈ E
(3)
(P,π)

, then a and c don’t have a common child in Cb,P in graph G.

Then G is Markov equivalent to G⋆.

Moreover, G⋆ satisfies properties 1 to 4 with respect to the partially ordered partition associated
with G⋆.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

THEOREM

Suppose that (P, π) is an optimal partially ordered partition, and G = ([n], E) is a directed graph
with the following properties:

1 For all (a, b) ∈ [n]2, a and b are p-adjacent in G if and only if (a, b) ∈ E
(1)
(P,π)

.

2 For all (a, b) ∈ [n]2, a is an ancestor of b in G if and only if Ca,P ≤π Cb,P .

3 If (a, b, c) ∈ E
(2)
(P,π)

\E(3)
(P,π)

and for all b′ ∈ [n] with Cb′,P <π Cb,P and (a, b′, c) ∈ E
(2)
(P,π)

,

(a, b′, c) ∈ E
(3)
(P,π)

, then a and c have a common child in Cb,P in graph G.

4 If (a, b, c) ∈ E
(3)
(P,π)

, then a and c don’t have a common child in Cb,P in graph G.

Then G is Markov equivalent to G⋆.

Moreover, G⋆ satisfies properties 1 to 4 with respect to the partially ordered partition associated
with G⋆.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

THEOREM

Suppose that (P, π) is an optimal partially ordered partition, and G = ([n], E) is a directed graph
with the following properties:

1 For all (a, b) ∈ [n]2, a and b are p-adjacent in G if and only if (a, b) ∈ E
(1)
(P,π)

.

2 For all (a, b) ∈ [n]2, a is an ancestor of b in G if and only if Ca,P ≤π Cb,P .

3 If (a, b, c) ∈ E
(2)
(P,π)

\E(3)
(P,π)

and for all b′ ∈ [n] with Cb′,P <π Cb,P and (a, b′, c) ∈ E
(2)
(P,π)

,

(a, b′, c) ∈ E
(3)
(P,π)

, then a and c have a common child in Cb,P in graph G.

4 If (a, b, c) ∈ E
(3)
(P,π)

, then a and c don’t have a common child in Cb,P in graph G.

Then G is Markov equivalent to G⋆.

Moreover, G⋆ satisfies properties 1 to 4 with respect to the partially ordered partition associated
with G⋆.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

THEOREM

Suppose that (P, π) is an optimal partially ordered partition, and G = ([n], E) is a directed graph
with the following properties:

1 For all (a, b) ∈ [n]2, a and b are p-adjacent in G if and only if (a, b) ∈ E
(1)
(P,π)

.

2 For all (a, b) ∈ [n]2, a is an ancestor of b in G if and only if Ca,P ≤π Cb,P .

3 If (a, b, c) ∈ E
(2)
(P,π)

\E(3)
(P,π)

and for all b′ ∈ [n] with Cb′,P <π Cb,P and (a, b′, c) ∈ E
(2)
(P,π)

,

(a, b′, c) ∈ E
(3)
(P,π)

, then a and c have a common child in Cb,P in graph G.

4 If (a, b, c) ∈ E
(3)
(P,π)

, then a and c don’t have a common child in Cb,P in graph G.

Then G is Markov equivalent to G⋆.

Moreover, G⋆ satisfies properties 1 to 4 with respect to the partially ordered partition associated
with G⋆.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

THEOREM

Suppose that (P, π) is an optimal partially ordered partition, and G = ([n], E) is a directed graph
with the following properties:

1 For all (a, b) ∈ [n]2, a and b are p-adjacent in G if and only if (a, b) ∈ E
(1)
(P,π)

.

2 For all (a, b) ∈ [n]2, a is an ancestor of b in G if and only if Ca,P ≤π Cb,P .

3 If (a, b, c) ∈ E
(2)
(P,π)

\E(3)
(P,π)

and for all b′ ∈ [n] with Cb′,P <π Cb,P and (a, b′, c) ∈ E
(2)
(P,π)

,

(a, b′, c) ∈ E
(3)
(P,π)

, then a and c have a common child in Cb,P in graph G.

4 If (a, b, c) ∈ E
(3)
(P,π)

, then a and c don’t have a common child in Cb,P in graph G.

Then G is Markov equivalent to G⋆.

Moreover, G⋆ satisfies properties 1 to 4 with respect to the partially ordered partition associated
with G⋆.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

THEOREM

Suppose that (P, π) is an optimal partially ordered partition, and G = ([n], E) is a directed graph
with the following properties:

1 For all (a, b) ∈ [n]2, a and b are p-adjacent in G if and only if (a, b) ∈ E
(1)
(P,π)

.

2 For all (a, b) ∈ [n]2, a is an ancestor of b in G if and only if Ca,P ≤π Cb,P .

3 If (a, b, c) ∈ E
(2)
(P,π)

\E(3)
(P,π)

and for all b′ ∈ [n] with Cb′,P <π Cb,P and (a, b′, c) ∈ E
(2)
(P,π)

,

(a, b′, c) ∈ E
(3)
(P,π)

, then a and c have a common child in Cb,P in graph G.

4 If (a, b, c) ∈ E
(3)
(P,π)

, then a and c don’t have a common child in Cb,P in graph G.

Then G is Markov equivalent to G⋆.

Moreover, G⋆ satisfies properties 1 to 4 with respect to the partially ordered partition associated
with G⋆.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

The SCCR algorithm determines whether a directed graph GCi
= ([n], ECi

) with the
following properties exists and outputs ECi

if so:

For any a, b ∈ [n], a and b are p-adjacent in GCi
iff (a, b) ∈ ACi

∪BCi
or

(b, a) ∈ ACi
∪BCi

,

Ci is a strongly connected component in GCi
, and Ci ̸≤GCi

Ca,GCi
for all

a ∈ [n] \ Ci,

for any (a, b) ∈ ComChCi
, a and b have a common child in Ci, and

for any (a, b) ∈ NoComChCi
, a and b do not have a common child in Ci.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

The SCCR algorithm determines whether a directed graph GCi
= ([n], ECi

) with the
following properties exists and outputs ECi

if so:

For any a, b ∈ [n], a and b are p-adjacent in GCi
iff (a, b) ∈ ACi

∪BCi
or

(b, a) ∈ ACi
∪BCi

,

Ci is a strongly connected component in GCi
, and Ci ̸≤GCi

Ca,GCi
for all

a ∈ [n] \ Ci,

for any (a, b) ∈ ComChCi
, a and b have a common child in Ci, and

for any (a, b) ∈ NoComChCi
, a and b do not have a common child in Ci.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

The SCCR algorithm determines whether a directed graph GCi
= ([n], ECi

) with the
following properties exists and outputs ECi

if so:

For any a, b ∈ [n], a and b are p-adjacent in GCi
iff (a, b) ∈ ACi

∪BCi
or

(b, a) ∈ ACi
∪BCi

,

Ci is a strongly connected component in GCi
, and Ci ̸≤GCi

Ca,GCi
for all

a ∈ [n] \ Ci,

for any (a, b) ∈ ComChCi
, a and b have a common child in Ci, and

for any (a, b) ∈ NoComChCi
, a and b do not have a common child in Ci.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

The SCCR algorithm determines whether a directed graph GCi
= ([n], ECi

) with the
following properties exists and outputs ECi

if so:

For any a, b ∈ [n], a and b are p-adjacent in GCi
iff (a, b) ∈ ACi

∪BCi
or

(b, a) ∈ ACi
∪BCi

,

Ci is a strongly connected component in GCi
, and Ci ̸≤GCi

Ca,GCi
for all

a ∈ [n] \ Ci,

for any (a, b) ∈ ComChCi
, a and b have a common child in Ci, and

for any (a, b) ∈ NoComChCi
, a and b do not have a common child in Ci.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

The SCCR algorithm determines whether a directed graph GCi
= ([n], ECi

) with the
following properties exists and outputs ECi

if so:

For any a, b ∈ [n], a and b are p-adjacent in GCi
iff (a, b) ∈ ACi

∪BCi
or

(b, a) ∈ ACi
∪BCi

,

Ci is a strongly connected component in GCi
, and Ci ̸≤GCi

Ca,GCi
for all

a ∈ [n] \ Ci,

for any (a, b) ∈ ComChCi
, a and b have a common child in Ci, and

for any (a, b) ∈ NoComChCi
, a and b do not have a common child in Ci.

13 / 15



RECOVERING A GRAPH FROM A PARTIALLY ORDERED PARTITION

13 / 15



SCCR ALGORITHM SIMULATIONS
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FIGURE: Results of running the SCCR algorithm with N = 100 on the partially ordered partitions associated
with 100 random graphs with 20 vertices generated according to the Erdős–Rényi model. The success rate is
0.98 and the average execution time is 71.90 seconds.
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SIMULATIONS

Random graphs were generated according to the Erdős–Rényi model and using the R
library igraph. The set of all d-separations satisfied by each graph was then generated
and given to this algorithm as its input.

We used the greedy optimization algorithm with the same parameters as before.

We used the SCCR algorithm with N = 100.

In the Markov equivalent graph discovery algorithm, we restricted ourselves to testing at
most 300 optimal partially ordered partitions.
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SIMULATIONS
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FIGURE: Results of running the Markov equivalent graph discovery algorithm on 120 random graphs with 7
vertices and different levels of sparsity. Thirty graphs were tested for each of the probabilities 0.2, 0.4, 0.6, and
0.8. From left to right, the success rates are 0.3, 0.97, 1 and 1.
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FIGURE: Results of running the Markov equivalent graph discovery algorithm on 120 random graphs with
different numbers of vertices n where each edge appears in the graph with probability 0.3. Thirty graphs were
tested for each n. From left to right, the success rates are 0.77, 0.90, 0.90 and 0.93.
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Thank you for listening!
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DIRECTED CYCLES IN THE CAUSAL GRAPH OF AN SCM

Assume that we study the investment and consumption in a closed market for a period of 3 (or
more) years, where the initial consumption (corresponding to year 0) is assumed to be a
constant such as u0. [Haavelmo, 1943]
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Assume that we study the investment and consumption in a closed market for a period of 3 (or
more) years, where the initial consumption (corresponding to year 0) is assumed to be a
constant such as u0. [Haavelmo, 1943]

The propensity to consume: If the group of all consumers in the society are provided with
the total income rt in year t, then they will spend a total amount ut for consumption in that
year, equal to

ut = α · rt + β + ε
(1)
t ,

where α and β are constants, and ε
(1)
t is a noise random variable.

The propensity to invest: If the group of all (private) investors in the society are repeatedly
confronted with an increase, δt, over the year t, in the consumption of goods, they will invest
an amount vt in the year t, given by

vt = κ · δt + ε
(2)
t ,

where κ is a constant, and ε
(2)
t is a noise random variable.

Closed market identity: In a closed market, all the income will either be spent on
consumption goods or invested. So,

rt = ut + vt.
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1 , u2 = α · r2 + β + ε
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(1)
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v1 = κ · (u1 − u0) + ε
(2)
1 , v2 = κ · (u2 − u1) + ε

(2)
2 , v3 = κ · (u3 − u2) + ε

(2)
3 ,

r1 = u1 + v1, r2 = u2 + v2, r3 = u3 + v3.
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CONDITION 3

G1 and G2 have the same set of unshielded imperfect non-conductors.

a

b

c
p-adjacency

ancestorship

adjacency

Let G = (V,E) be a directed graph. A triple
(a, b, c) ∈ V 3 is said to be an unshielded
imperfect non-conductor if

(a, b, c) is an unshielded non-conductor,
and

b is not the descendant of any of the
common children of a and c.
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FIGURE: Unshielded imperfect non-conductor

PROPOSITION

For each (P, π) ∈ S, let

E
(3)
(P,π)

:=
{
(a, b, c) ∈ [n]3 | (a, b, c) ∈ E

(2)
(P,π)

,

a ⊥⊥ c |
⋃{

C ∈ P
∣∣ C ≤π max{Ca,P , Cb,P , Cc,P

}
} \ {a, c}

}
.

Also, define S3 := argmax(P,π)∈S2

∣∣∣E(3)
(P,π)

∣∣∣. Then

the partially ordered partition associated with G⋆ is in S3, and

for every (P, π) ∈ S3, the set E(3)
(P,π)

is equal to the set of unshielded imperfect
non-conductors in G⋆.
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CONDITION 4

If (a, b1, c) and (a, b2, c) are unshielded imperfect non-conductors (in G1 and
G2), then b1 is an ancestor of b2 in G1 iff b1 is an ancestor of b2 in G2.

PROPOSITION

For every (P, π) ∈ S, let

E
(4)
(P,π)

:=
{
((a, b1, c), (a, b2, c)) ∈ [n]3 × [n]3 | (a, b1, c), (a, b2, c) ∈ E

(3)
(P,π)

Cb1,P ≤π Cb2,P
}
.

Also, define S4 := argmin(P,π)∈S3

∣∣∣E(4)
(P,π)

∣∣∣. Then

the partially ordered partition associated with G⋆ is in S4, and

for every (P, π) ∈ S4, ((a, b1, c), (a, b2, c)) ∈ E
(4)
(P,π)

if and only if (a, b1, c), (a, b2, c) are
unshielded imperfect non-conductors and b1 is an ancestor of b2 in G⋆.
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CONDITION 5

For any t ∈ N, triples (a0, a1, a2) and (at−1, at, at+1) are mutually exclusive
with respect to the uncovered itinerary P = (a0, a1, a2, . . . , at−1, at, at+1) in
G1 iff (a0, a1, a2) and (at−1, at, at+1) are mutually exclusive with respect to

P in G2.

ancestorship p-adjacency
a0

a1 at−1 at

at+1

a2

Let G = (V,E) be a directed graph. For t ∈ N and a0, a1, . . . , at, at+1 ∈ V , the triples
(a0, a1, a2), (at−1, at, at+1) are said to be mutually exclusive with respect to an uncovered
itinerary (a0, a1, a2, . . . , at−1, at, at+1) if

ai, ai−1 are p-adjacent for all i ∈ [t+ 1],

ai, aj are not p-adjacent for all i ∈ {2, . . . , t+ 1} and j ≤ i− 2,

a1, . . . , at are all in the same strongly connected component of G,

a0 and at+1 are not in this component, and

a0 and at+1 are ancestors of a1.
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CONDITION 5

PROPOSITION

For all t ∈ [n− 2] and (P, π) ∈ S, let

D
(t)
(P,π)

:=
{
(a0, a1, . . . , at, at+1) ∈ [n]t+2 | a0, a1, . . . , at+1 are distinct,

(ai, ai−1) ∈ E
(1)
(P,π)

∀ i ∈ [t+ 1],

(ai, aj) ̸∈ E
(1)
(P,π)

∀ i ∈ {2, . . . , t+ 1}, j ≤ i− 2,

Ca1,P = Ca2,P = · · · = Cat,P ,

Ca1,P ̸≤π Ca0,P , Ca1,P ̸≤π Cat+1,P}
}
.

Also, define S
(1)
5 := S4 and for all t ∈ {2, . . . , n− 2}, S(t)

5 := argmax
(P,π)∈S

(t−1)
5

∣∣∣D(t)
(P,π)

∣∣∣.
Then

the partially ordered partition associated with G⋆ is in S
(t)
5 for all t ∈ [n− 2], and

for all t ∈ [n− 2] and (P, π) ∈ S
(t)
5 , (a0, a1, · · · , at, at+1) ∈ D

(t)
(P,π)

if and only if
(a0, a1, a2) and (at−1, at, at+1) are mutually exclusive with respect to the uncovered
itinerary (a0, a1, . . . , at+1) in G⋆.
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CONDITION 6

If (a0, a1, a2) and (at−1, at, at+1) are mutually exclusive with respect to
some uncovered itinerary (a0, a1, . . . , at+1) and (a0, b1, at+1) is an

unshielded imperfect non-conductor (in G1 and G2), then a1 is an ancestor of
b in G1 iff a1 is an ancestor of b in G2.

PROPOSITION

For every (P, π) ∈ S, let

E
(6)
(P,π)

:=

n−2⋃
t=1

{
((a0, a1, . . . , at, at+1), (a0, b, at+1)) ∈ [n]t+5 | (a0, b, at+1) ∈ E

(3)
(P,π)

(a0, a1, . . . , at, at+1) ∈ D
(t)
(P,π)

,

Ca1,P ≤π Cb,P
}
.

Also, define S6 := argmin
(P,π)∈S

(n−2)
5

∣∣∣E(6)
(P,π)

∣∣∣. Then

the partially ordered partition associated with G⋆ is in S6, and

for every (P, π) ∈ S6, ((a0, a1, · · · , at, at+1), (a0, b, at+1)) ∈ E
(6)
(P,π)

if and only if
(a0, a1, a2) and (at−1, at, at+1) are mutually exclusive with respect to the uncovered
itinerary (a0, a1, . . . , at+1), (a0, b1, at+1) is an unshielded imperfect non-conductor, and a1
is an ancestor of b in G⋆.
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OPTIMIZATION SIMULATIONS
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FIGURE: Results of running the greedy optimization algorithm on 120 random graphs with different numbers of
vertices n where each edge appears in the graph with probability 0.2. Thirty graphs were tested for each n.
From left to right, the success rates are 0.93, 0.93, 0.93 and 0.87.
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.
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BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Two edges (a, b), (c, b) ∈ [n]× C are said to be incompatible if a ̸= c and one of the following
happens:

a, c ∈ [n] \ C and (a, c) ∈ NoComChC , or

C ∩ {a, c} ̸= ∅, (a, c) ̸∈ AC ∪BC , and (c, a) ̸∈ AC ∪BC .

An edge is said to be safe to be added to a set of edges if it’s not incompatible with any of them.
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First assigns a common child
to each pair in ComChC . 1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Starts from a vertex in C
with the lowest degree in
([n], AC ∪BC) .
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

When an edge is added, the
algorithm makes sure it’s
safe. If not, the algorithm
initiates a correction
process. In this process, the
algorithm first tries to
remove the unsafe edge.
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C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

In each iteration, the
algorithm adds an edge from
AC ∪BC to the construction
such that the added edges
form an almost directed
path.
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge added
(incompatible with (5, 2))!
Correction process starts. 1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1
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BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge added
(incompatible with (7, 1))!
Correction process starts. 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge added
(incompatible with (7, 1))!
Correction process starts. 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge added
(incompatible with (7, 1))!
Correction process starts. 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge added
(incompatible with (5, 2))!
Correction process starts. 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

In the correction process,
when removing fails, the
algorithm flips the edge (in
case the head and the tail
are both in C). Each edge is
allowed to be corrected at
most once. So, if the flipped
edge is incompatible with an
edge already affected in a
correction process (in this
case, (1, 5)), the algorithm
jumps back to the stage right
before the iteration involving
the correction of this edge
started.
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

The algorithm is only
allowed to erase part of its
progress N times.
If that happens, the
algorithm shuffles AC and
BC and starts over avoiding
the choice leading to its first
failed attempt.
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge (incompatible
with (5, 2))! Correction
process starts. 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge added
(incompatible with (5, 2))!
Correction process starts. 1

3 5 2

4 6 9
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8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Failed to remove (9, 2).
So, moved to (5, 2).
Failed to remove (5, 2).
So, flips (5, 2).
But now (2, 5) is
incompatible with (1, 5).
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

(9, 2) is still incompatible
with another (5, 2) in the
construction. So, the
algorithm jumps back to the
stage right before adding
that (5, 2).
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Shuffles AC and BC and
starts over. 1

3 5 2

4 6 9
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8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge (incompatible
with (7, 1))! Correction
process starts. 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1

3 5 2
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge (incompatible
with (6, 4))! Correction
process starts. 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Failed to remove (1, 4). So,
flips (1, 4) and now the
problem is resolved! 1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge (incompatible
with (2, 4))! Correction
process starts. 1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge (incompatible
with (7, 1))! Correction
process starts. 1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved! 1

3 5 2
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge (incompatible
with (7, 1))! Correction
process starts. 1
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AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

1

3 5 2

4 6 9

7 8

8 / 9



AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Unsafe edge (incompatible
with (2, 4))! Correction
process starts. 1
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AN SCCR ALGORITHM: CONSTRUCT AND CORRECT

C := {1, 2, 3, 4, 5, 6},
AC := {(1, 3), (3, 5), (1, 5), (2, 4), (2, 6), (4, 6), (1, 4), (2, 5)},
BC := {(7, 1), (8, 1), (7, 4), (8, 4), (9, 6), (9, 2)},
ComChC := {(7, 8), (8, 7)}, NoComChC := {(7, 9), (9, 7)}.

Problem resolved!
The algorithm now outputs
this construction.
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CORRECTNESS OF THE SCCR ALGORITHM

PROPOSITION

Suppose a subset C ⊆ [n] and sets AC ⊆ C2, BC ⊆ ([n] \C)×C, ComChC ⊆ ([n] \C)2 and
NoComChC ⊆ ([n] \ C)2 are given. For any N ∈ N, if the SCCR algorithm outputs a set
EC ⊆ [n]2, then EC satisfies the desired properties.

CONJECTURE

For all n ∈ N, there exists N ∈ N that satisfies the following: Let (P0, π0) be the partially ordered
partition associated with G⋆. Suppose C ∈ P0 and

AC :=
{
(a, b) ∈ E

(1)
(P0,π0)

∣∣∣ a, b ∈ C
}
,

BC :=
{
(a, b) ∈ E

(1)
(P0,π0)

∣∣∣ a ̸∈ C, b ∈ C,Ca,P0
≤π0 Cb,P0

}
.

Moreover, let ComChC and NoComChC be the sets of pairs that must have and must not have
common children in C per conditions of the previously stated theorem. Then given
C,AC , BC , ComChC , NoComChC and N , with high probability the SCCR algorithm outputs a
set EC ⊆ [n]2 satisfying the desired properties.

Back to simulations
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