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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

Introduction to Double Machine Learning

• Massive / Big Data become more and more available.
• Machine learning methods focus mostly on prediction.
• But in many situations the interest is on learning (causal)

relationships and making inference.
• Bringing in statistical modelling → strength of statistics and

econometrics
• Combining machine learning and (causal) inference
• Here: Estimation and inference of high-dimensional additive

models
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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

Introduction

Main goal: Provide general framework for estimating and doing
inference about a low-dimensional parameter (θ0) in the presence
of high-dimensional nuisance parameter (η0) which may be
estimated with the new generation of nonparametric statistical
methods, “machine learning” (ML) methods, such as

• random forests,
• boosted trees,
• lasso,
• ridge,
• deep and standard neural nets,
• gradient boosting,
• their aggregations,
• and cross-hybrids.
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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

We consider the linear regression model in a high-dimensional
setting (potentially p ≥ n)

Y = Dθ0 + X1β1 + . . .Xpβp + ε, E[ε | X ,D] = 0,

• Y - outcome variable
• D - policy/treatment variable
• θ0 - parameter of interest
• β = (β1, . . . , βp)t - nuisance parameter
• X = (X1, . . . ,Xp)t is a vector of other covariates, called

“controls”or “confoundersin the sense that

D = γtX + ν, E [ν|X ] = 0.

Martin Spindler Quarter on Causality January 24, 2023 3 / 31



Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

Example: Cross-Country Growth Regression
• Relation between growth rate and initial per capita GDP,

conditional on covariates, describing institutions and
technological factors:

GrowthRatei︸ ︷︷ ︸
Yi

= β0 + θ0 log(GDPi)︸ ︷︷ ︸
Di

+
p∑

j=1
βjXij + εi

where the model is exogenous,
E[εi |Di ,Xi ] = 0

• Test the convergence hypothesis (θ0 < 0) that poorer
countries catch up with richer countries, conditional on similar
institutions and other factors. Prediction from the classical
Solow growth model.

• In Barro-Lee data, we have p = 60 covariates, n = 90
observations. Need to do selection.
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High-Dimensional Additive Models

”Naive” or Prediction-Based ML Approach is Bad

Naive/Textbook Inference:
1 Select controls terms by running Lasso (or variants) of Yi on

Xi

2 Estimate θ0 by least squares of Yi on Di and selected
controls, apply standard inference

The distribution of θ̂0 − θ0 looks like this:
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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

The “Double” ML Approach

1 Predict Y and D using X by E[Y |X ] and E[D|X ], obtained
using Lasso, Random Forest or other â€œbest performingâ€
ML tools.

2 Residualize W = Y − E[Y |X ] and V = D − E[D|X ]
3 Regress W on V to get θ0

Frisch-Waugh-Lovell (1930s) style with ML methods
The distribution of θ̂0 − θ0 looks like this:
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High-Dimensional Additive Models

Example

Method effect s.e.
Barro-Lee (Economic Reasoning) −0.02 0.005
All Controls (n = 90, p = 60) −0.02 0.031
Post-Naive Selection −0.01 0.004
Post-Double Selection −0.03 0.011

• Double-Selection finds 8 controls, including trade-openness
and several education variables.

• Our findings support the conclusions reached in Barro and Lee
and Barro and Sala-i-Martin.

• Using all controls is very imprecise.
• Using naive selection gives a biased estimate for the speed of

convergence.
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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

Moment Conditions

The two strategies rely on very different moment conditions for
identifying and estimating θ0:

E[εD] = E[(Y − Dθ0 − g0(X ))D] = 0 (1)
E[(W − V θ0)V ] = 0, (2)

with W ≡ Y − E[Y |X ] and V ≡ D − E[D|X ].

• (1) - Regression adjustment
• (2) - Neyman-orthogonal

Both approaches generate estimators of θ0 that solve the empirical
analog of the moment conditions above; unknown nuisance functions

g0(X ), m0(X ) := E[D|X ], ℓ0(X ) = E[Y |X ]

are replaced with their ML-based estimators.
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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

“Naive” or “Prediction-focused” ML Estimation
Suppose we use (1) with an estimator ĝ0(X ) to estimate θ0:

θ̂0 =
(

1
n

n∑
i=1

D2
i

)−1 1
n

n∑
i=1

Di(Yi − ĝ0(Xi))

√
n(θ̂0 − θ0) =

(
1
n

n∑
i=1

D2
i

)−1 1√
n

n∑
i=1

Diεi︸ ︷︷ ︸
:=a

+
(

1
n

n∑
i=1

D2
i

)−1 1√
n

n∑
i=1

Di (g0(Xi) − ĝ0(Xi))︸ ︷︷ ︸
:=b

• a⇝ N(0, Σ̄) under standard conditions
• What about b?
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High-Dimensional Additive Models

Estimation Error in Nuisance Function

We will generally have b → ∞:

b ≈ (ED2)−1 1√
n

n∑
i=1

m0(Xi) (g0(Xi) − ĝ0(Xi))

• (g0(Xi) − ĝ0(Xi)) error in estimating g0

Heuristics:
• In nonparametric setting, the error is of order n−φ for

0 < φ < 1/2.
• b will then look like √

nn−φ → ∞
The “naive” or prediction-focused ML estimator θ̂0 is not root-n
consistent.
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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

Orthogonalized or “Double ML” Formulation
Consider estimation based on (2)

θ̌0 =
(

1
n

n∑
i=1

V̂ 2
i

)−1 1
n

N∑
i=1

V̂iŴi

• V̂ = D − m̂0(X ), Ŵ = Y − ℓ̂0(X )
Under mild conditions, we can write
√

n(θ̌0 − θ0) =
(

1
n

n∑
i=1

V 2
i

)−1
1√
n

n∑
i=1

Viεi︸ ︷︷ ︸
:=a∗

+
(

1
n

n∑
i=1

V 2
i

)−1
1√
n

n∑
i=1

(m0(Xi) − m̂0(Xi))
(
ℓ0(Xi) − ℓ̂0(Xi)

)
︸ ︷︷ ︸

:=b∗

+ op(1).
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High-Dimensional Additive Models

Heuristic Convergence Properties

• a∗ ⇝ N(0,Σ) under standard conditions
• b∗ now depends on product of estimation errors in both

nuisance functions
• b∗ will look like √

nn−(φm+φℓ) where n−φm and n−φℓ are
respectively appropriate convergence rates of estimators for
m(x) and ℓ(x)

• o(n−1/4) is often an attainable rate for estimating m(x) and
ℓ(x)

The Double ML estimator θ̌0 is a √
n consistent and

approximately centered normal quite generally.
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High-Dimensional Additive Models

Neyman Orthogonality as Key Difference
• Key difference between estimation based on (1) and

estimation based on (2) is that (2) satisfies the Neyman
orthogonality condition:
Let

η0 = (ℓ0,m0) = (E[Y |X ],E[D|X ]) , η = (ℓ,m).
The partial derivative of the moment condition (2) with
respect to η vanishes:

∂ηE[ψ(W , θ0, η)]
∣∣∣
η=η0

= 0,

where W denotes the data (Y ,D,X ).
• Heuristically, the moment condition remains “valid” under

“local” mistakes in the nuisance function.
• This property generally does not hold for the moment

condition (1).
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High-Dimensional Additive Models

Literature and Generalization

• Literature
▶ Linear model: Belloni, Chernozhukov, Hansen (2015), Zhang

and Zhang (2015), Bühlmann et al. (2015)
▶ Instrumental variable estimation: Belloni, Chen, Chernozhukov,

Hansen (2012), Chernozhukov, Hansen, Spindler (2015)
▶ Various treatment effecs: Belloni, Chernozhukov,

Fernandez-Val, Hansen (2017)
• Software implementation: R package hdm (Chernozhukov,

Hansen, Spindler, 2016), R / Python package doubleML
(Bach, Chernozhukov, Kurz, Spindler, 2021a, 2021b)
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High-Dimensional Additive Models

Literature and Generalization

• Inference about low-dimensional parameters in
high-dimensional (linear) models:
▶ Belloni, Chernozhukov, Hansen, and coauthors (in a series of

papers)
• Inference about high-dimensional parameters by allowing the

number of moment condition to grow with sample size:
▶ Belloni et al. (2018) “Uniformly Valid Post-Regularization

Confidence Regions for Many Functional Parameters in
Z-Estimation Framework”

▶ Chernozhukov et al. (2017) “Central Limit Theorems and
Bootstrap in High Dimensions”
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High-dimensional Additive Models

• Additive models are quite popular in statistics, imposing an
additive structure to evade curse of dimensionality

Y = β + f1(X1) + . . .+ fp(Xp) + ε, E[ε|X ] = 0

where β denotes a constant and fj(·) univariate functions.
• We rewrite the model as

Y = f1(X1) + f−1(X−1) + ε,

where f1(X1) with E[f1(X1)] = 0 denotes the target
component and f−1(X−1) is a nuisance function.
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Motivation
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Literature Review

• Confidence bands under fixed dimension: Härdle (1989), Sun
and Loader (1994), Fan and Zhang (2000) and many others

• Estimation rates in high dimensions: Lin and Zhang (2006),
Meier et al. (2009), Huang et al. (2010), Kato (2012), Lou et
al. (2014) and many others

• Confidence bands in high dimensions: Kozbur (2020), Lu,
Kolar and Liu (2020), Gregory, Mammen and Wahl (2021)
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Introduction – The Double Machine Learning Framework
High-Dimensional Additive Models

Motivation

• Goal: Providing uniformly valid confidence bands for the
target function f1(·) in a high-dimensional setting.

• Main idea:
▶ Approximation of each component with sieves:

f1(X1) = θT
0 g(X1) + b1(X1)

f−1(X−1) = βT
0 h(X−1) + b2(X−1),

for a suitable set of approximating functions
g(x) = (g1(x), . . . , gd1(x))T and h(x) = (h1(x), . . . , hd2(x))T

(e.g. b-splines,. . . ).
• The number of approximating functions d1 may grow with

sample size.
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Double Machine Learning Framework (1/2)
• Given the approximations, we consider the very

high-dimensional regression model

Y = θT
0 g(X1) + βT

0 h(X−1) + b1(X1) + b2(X−1) + ε.

• Further, assume that

gl(X1) = (γ(l)
0 )T Z−l + ν(l), E[ν(l)Z−l ] = 0

with Z := (g1(X1), . . . , gd1(X1), h1(X−1), . . . , hd2(X−1))T .
• This partially linear model is well known and estimating
θ0 = (θ0,1, . . . , θ0,d1) can be recast into a general Z-estimation
problem:

E [ψl(W , θ0,l , η0,l)] = 0 l = 1, . . . , d1.
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Double Machine Learning Framework (2/2)
• The score is given by

ψl(W , θ, η) =
(
Y − θgl(X1) − (η(1))T Z−l − η(3)(X )

)
·
(
gl(X1) − (η(2))T Z−l

)
.

with ψl(W , θ0,l , η0,l) = ε · ν(l) .
• The nuisance parameters are

η
(1)
0,l := β

(l)
0 = (θ0,1, . . . , θ0,l−1, θ0,l+1, . . . , θ0,d1 , β0,1, . . . , β0,d2)T

η
(2)
0,l := γ

(l)
0 , η

(3)
0,l (X ) := b1(X1) + b2(X−1).

• The score fulfills the near Neyman orthogonality condition

∂ηE[ψ(W , θ0,l , η)]|η=η0,l = o(n−1/2).
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High-Dimensional Additive Models

Challenges (1/2)

• Main Challenge DML provide valid inference on θ0, but we
are interested in

f1(·) ≈ θT
0 g(·).

• Non-trivial extension of the DML Framework is needed.
• Using b-splines or other local estimators, we have a problem

of vanishing eigenvalues:

cd−1
1 ≤ inf

∥ξ∥2=1
E
[(
ξT g(X1)

)2
]

≤ sup
∥ξ∥2=1

E
[(
ξT g(X1)

)2
]

= Cd−1
1

since E [gl(Xl)2] = O
(

t1
(d1−t1+2)

)
where t1 denotes the

number of non-zero elements of g .
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Challenges (2/2)
• The lasso estimators need to fulfill∥∥∥β̂(l)

0 − β
(l)
0

∥∥∥
2

= o(n−1/4) and
∥∥∥γ̂(l)

0 − γ
(l)
0

∥∥∥
2

= o(n−1/4)

• On the other hand, we rely on the two approximations

f1(X1) = θT
0 g(X1) + b1(X1)

f−1(X−1) = βT
0 h(X−1) + b2(X−1),

with θ0 ∈ Rd1 and β0 ∈ Rd2 .
• We need to ensure that

sup
x

(b1(x1) + b2(x−l)) = o(n−1/4).

• There is a trade-off regarding the number of approximating
function d1 and d2.
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Main Theorem
Modifying the Double Machine Learning Framework enables us to
provide uniformly valid confidence bands for the target function

f1(x) ≈ θT
0 g(x).

Define

û(x) := θ̂T g(x) + (g(x)T Σ̂ng(x))1/2cα√
n

l̂(x) := θ̂T g(x) − (g(x)T Σ̂ng(x))1/2cα√
n .

Theorem
Under regularity assumptions, it holds

P
(̂
l(x) ≤ f1(x) ≤ û(x), ∀x ∈ I

)
→ 1 − α.
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Simulation Study (1/3)
• Data generating process based on Gregory et al. (2021)

Yi =
p∑

j=1
fj(Xj,i) + εi , i = 1, . . . , n

with 4 non-zero components and ε ∼ N(0, 1).
• For each component, we use cubic B-Splines with nine

degrees of freedom for approximation.
• Xj ∼ U [−2.5, 2.5] and Cov(Xk ,Xl) = 0, 5|k−l |.

DGP 1 (sine) f1(x) = − sin(2 · x)
DGP 2 (quad) f2(x) = x2 − 25/12
DGP 3 (line) f3(x) = x
DGP 4 (expo) f4(x) = exp(−x) − 2

5 sinh( 5
2 )

Table: Data generating processes in simulation study.
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Simulation Study (2/3)

−5.0

−2.5

0.0

2.5

5.0

−2 −1 0 1 2
x

y

colour Estimated Values True Values

n = 100, p = 150

(a) n = 100

−5.0

−2.5

0.0

2.5

5.0

−2 −1 0 1 2
x

y

colour Estimated Values True Values

n = 1000, p = 150

(b) n = 1000

Figure: Exemplary simulation results for f1(x) = − sin(2 · x).
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Simulation Study (3/3)

n p sine quad line expo
100 150 0.954 0.926 0.942 0.962
100 50 0.912 0.93 0.942 0.948
1000 150 0.932 0.946 0.926 0.938
1000 50 0.936 0.948 0.92 0.954

Table: Simulation results: Coverage achieved by simultaneous confidence bands
for α = 0.05 over the interval [−1.5, 1.5] in R = 500 repetitions.
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Summary of the Paper

• Methodology for uniformly valid confidence bands for a
nonparametric function f1(X1) in a high-dimensional additive
model.

• Non-trivial extension of the DML Framework ( details ).
• Analysis of regression models in high-dimensions without

imposing the strong assumptions of linearity.
• We provide simulation studies ( details ) and an empirical

illustration of the estimation procedure ( details ).
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More on Double Machine Learning
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More on Double Machine Learning

Figure: https://www.auai.org/uai2022/tutorials
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More on Double Machine Learning
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The Role of Neyman Orthogonality

• We have the taylor expansion

J
√

n(θ̂ − θ0) = An +
√

nDO(∥η̂ − η0∥) + C
√

nO(∥η̂ − η0∥2)
+ op(1),

where An is approximately Gaussian under weak conditions.
• Under Neyman orthogonality,

D := ∂ηE[ψ(W , θ0, η)]|η=η0 = 0

and thus we only need

C
√

nO(∥η̂ − η0∥2) → 0

for √
n consistency which requires ∥η̂ − η0∥ = oP(n−1/4).

Back
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Double Machine Learning Estimator

The score ψ is linear in θ, meaning

ψl(W , θ, η) = ψa
l (X , η(2))θ + ψb

l (X , η)

with
ψa

l (X , η(2)) = −gl(X1)(gl(X1) − (η(2))T Z−l)

and

ψb
l (X , η) = (Y − (η(1))T Z−l − η(3)(X ))(gl(X1) − (η(2))T Z−l).

Thus, the estimator is given by

θ̂l = −En[ψa
l (Xi , η̂

(2))]−1En[ψb
l (Xi , η̂)]

for all l = 1, . . . , d1.
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Proof Snippet
We prove the following Bahadur representation

sup
x∈I

∣∣∣√n(g(x)T Σng(x))−1/2g(x)T (θ̂ − θ0
)∣∣∣ = sup

x∈I

∣∣∣Gn(ψx )
∣∣∣+ oP(1)

with

ψx (·) := (g(x)T Σng(x))−1/2g(x)T J−1
0 ψ(·, θ0, η0)

where J0,l = −E[(ν(l))2] and

Σn =



E[(εν(1))2]
E[(ν(1))2]2

E
[

εν(1)εν(2)
]

E[(ν(1))2]E[(ν(2))2]
. . .

E
[

εν(1)εν(d1)
]

E[(ν(1))2]E[(ν(d1))2]
E
[

εν(2)εν(1)
]

E[(ν(2))2]E[(ν(1))2]
E[(εν(2))2]
E[(ν(2))2]2

. . .
E
[

εν(2)εν(d1)
]

E[(ν(2))2]E[(ν(d1))2]
...

...
. . .

...
E
[

εν(d1)εν(1)
]

E[(ν(d1))2]E[(ν(1))2]

E
[

εν(d1)εν(2)
]

E[(ν(d1))2]E[(ν(1))2]
. . .

E[(εν(d1))2]
E[(ν(d1))2]2


.
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Bootstrap

The critical value cα can be determined by the following multiplier
bootstrap method introduced in Chernozhukov et al. (2017).
Define

ψ̂x (·) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ0
−1
ψ(·, θ̂0, η̂0)

and let

Ĝ =
(
Ĝx
)

x∈I
=
(

1√
n

n∑
i=1

ξ(i)ψ̂x
(
W (i)

))
x∈I

,

where (ξ(i))n
i=1 are independent standard normal random variables.

The multiplier bootstrap critical value cα is given by the
(1 − α)-quantile of the conditional distribution of supx∈I |Ĝx | given
(W (i))n

i=1.
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Empirical Application: Boston Housing Prices (1/2)
• Method applied on the well-known Boston Housing data, with

n = 506 observations and p = 11 (continuous) covariates.

MEDVi = f1(LSTATi) + f2(CRIMi) + f3(ZNi) + f4(INDUSi) + f5(RMi)
+ f6(AGEi) + f7(DISi) + f8(TAXi) + f9(PTRATIOi)
+ f10(ETHNi) + f11(NOXi) + ϵi .

−10

−5

0

5

10

10 20 30
LSTAT

M
E

D
V

Figure: Estimated f1(x) with simultaneous 95%-confidence bands.
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Empirical Application: Boston Housing Prices (2/2)

MEDV median value of owner-occupied homes in USD 1000’s
NOX nitric oxides
CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft
INDUS proportion of non-retail business acres per town
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres
TAX full-value property-tax rate per USD 10,000
PTRATIO pupil-teacher ratio by town
BLACK 1000(B − 0.63)2 where B is the proportion of blacks by town
LSTAT percentage of lower status of the population

Table: List of variables: Boston Housing Data.
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