

Introduction to Double Machine Learning and Uniform in High-Dimensional Additive Models

Joint work with Philipp Bach, Sven Klaassen and Jannis Kück

University of Hamburg & Economic AI

When Causal Inference meets Statistical Analysis Paris, April 18, 2023

1 Introduction – The Double Machine Learning Framework

2 High-Dimensional Additive Models

Introduction to Double Machine Learning

- Massive / Big Data become more and more available.
- Machine learning methods focus mostly on prediction.
- But in many situations the interest is on learning (causal) relationships and making inference.
- Bringing in statistical modelling \rightarrow strength of statistics and econometrics
- Combining machine learning and (causal) inference
- Here: Estimation and inference of high-dimensional additive models

Introduction

Main goal: Provide general framework for estimating and doing inference about a low-dimensional parameter (θ_0) in the presence of high-dimensional nuisance parameter (η_0) which may be estimated with the new generation of nonparametric statistical methods, "machine learning" (ML) methods, such as

- random forests,
- boosted trees,
- lasso,
- ridge,
- deep and standard neural nets,
- gradient boosting,
- their aggregations,
- and cross-hybrids.

We consider the linear regression model in a high-dimensional setting (potentially $p \ge n$)

$$Y = D\theta_0 + X_1\beta_1 + \dots X_p\beta_p + \varepsilon, \quad \mathbf{E}[\varepsilon \mid X, D] = 0,$$

- Y outcome variable
- D policy/treatment variable
- θ_0 parameter of interest
- $\beta = (\beta_1, \dots, \beta_p)^t$ nuisance parameter
- $X = (X_1, ..., X_p)^t$ is a vector of other covariates, called "controls" or "confoundersin the sense that

$$D = \gamma^t X + \nu, \quad E[\nu|X] = 0.$$

Example: Cross-Country Growth Regression

 Relation between growth rate and initial per capita GDP, conditional on covariates, describing institutions and technological factors:

$$\underbrace{GrowthRate_{i}}_{Y_{i}} = \beta_{0} + \theta_{0} \underbrace{\log(GDP_{i})}_{D_{i}} + \sum_{j=1}^{p} \beta_{j} X_{ij} + \varepsilon_{i}$$

where the model is exogenous,

$$\mathrm{E}[\varepsilon_i|D_i,X_i]=0$$

- Test the convergence hypothesis ($\theta_0 < 0$) that poorer countries catch up with richer countries, conditional on similar institutions and other factors. Prediction from the classical Solow growth model.
- In Barro-Lee data, we have p = 60 covariates, n = 90 observations. Need to do selection.

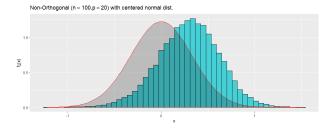
Martin Spindler

Quarter on Causality

"Naive" or Prediction-Based ML Approach is Bad

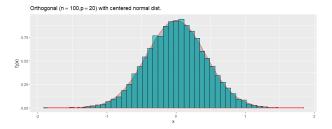
Naive/Textbook Inference:

- Select controls terms by running Lasso (or variants) of Y_i on X_i
- **2** Estimate θ_0 by least squares of Y_i on D_i and selected controls, apply standard inference
- The distribution of $\hat{\theta}_0 \theta_0$ looks like this:



The "Double" ML Approach

- Predict Y and D using X by E[Y|X] and E[D|X], obtained using Lasso, Random Forest or other "best performingâ€ ML tools.
- **2** Residualize W = Y E[Y|X] and V = D E[D|X]
- **3** Regress W on V to get θ_0
- Frisch-Waugh-Lovell (1930s) style with ML methods The distribution of $\hat{\theta}_0 \theta_0$ looks like this:



Example

Method	effect	s.e.
Barro-Lee (Economic Reasoning)	-0.02	0.005
All Controls $(n = 90, p = 60)$	-0.02	0.031
Post-Naive Selection	-0.01	0.004
Post-Double Selection	-0.03	0.011

- Double-Selection finds 8 controls, including trade-openness and several education variables.
- Our findings support the conclusions reached in Barro and Lee and Barro and Sala-i-Martin.
- Using all controls is very imprecise.
- Using naive selection gives a biased estimate for the speed of convergence.

Moment Conditions

The two strategies rely on very different moment conditions for identifying and estimating θ_0 :

$$\mathbf{E}[\varepsilon D] = \mathbf{E}[(Y - D\theta_0 - g_0(X))D] = 0 \tag{1}$$

$$\mathbf{E}[(W - V\theta_0)V] = 0, \qquad (2)$$

with $W \equiv Y - E[Y|X]$ and $V \equiv D - E[D|X]$.

- (1) Regression adjustment
- (2) Neyman-orthogonal

Both approaches generate estimators of θ_0 that solve the empirical analog of the moment conditions above; unknown nuisance functions

$$g_0(X), \quad m_0(X) := \operatorname{E}[D|X], \quad \ell_0(X) = \operatorname{E}[Y|X]$$

are replaced with their ML-based estimators.

Martin Spindler

"Naive" or "Prediction-focused" ML Estimation

Suppose we use (1) with an estimator $\hat{g}_0(X)$ to estimate θ_0 :

$$\hat{\theta}_{0} = \left(\frac{1}{n}\sum_{i=1}^{n}D_{i}^{2}\right)^{-1}\frac{1}{n}\sum_{i=1}^{n}D_{i}(Y_{i} - \hat{g}_{0}(X_{i}))$$

$$\sqrt{n}(\hat{\theta}_{0} - \theta_{0}) = \underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}D_{i}^{2}\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}D_{i}\varepsilon_{i}}_{:=a} + \underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}D_{i}^{2}\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}D_{i}\left(g_{0}(X_{i}) - \hat{g}_{0}(X_{i})\right)}_{:=b}$$

- $a \rightsquigarrow N(0, \overline{\Sigma})$ under standard conditions
- What about *b*?

Martin Spindler

Estimation Error in Nuisance Function

We will generally have $b \to \infty$:

$$b \approx (ED^2)^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n m_0(X_i) (g_0(X_i) - \hat{g}_0(X_i))$$

•
$$(g_0(X_i) - \hat{g}_0(X_i))$$
 error in estimating g_0

Heuristics:

- In nonparametric setting, the error is of order $n^{-\varphi}$ for $0 < \varphi < 1/2$.
- *b* will then look like $\sqrt{n}n^{-\varphi} \to \infty$

The "naive" or prediction-focused ML estimator $\hat{\theta}_0$ is not root-*n* consistent.

Orthogonalized or "Double ML" Formulation

Consider estimation based on (2)

$$\check{\theta}_0 = \left(\frac{1}{n}\sum_{i=1}^n \hat{V}_i^2\right)^{-1} \frac{1}{n}\sum_{i=1}^N \hat{V}_i \hat{W}_i$$

•
$$\hat{V} = D - \hat{m}_0(X), \ \hat{W} = Y - \hat{\ell}_0(X)$$

Under mild conditions, we can write

$$\begin{split} \sqrt{n}(\check{\theta}_{0}-\theta_{0}) &= \underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}V_{i}^{2}\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}V_{i}\varepsilon_{i}}_{:=a^{*}} \\ &+ \underbrace{\left(\frac{1}{n}\sum_{i=1}^{n}V_{i}^{2}\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(m_{0}(X_{i})-\hat{m}_{0}(X_{i})\right)\left(\ell_{0}(X_{i})-\hat{\ell}_{0}(X_{i})\right)}_{:=b^{*}} \\ &+ o_{p}(1). \end{split}$$

Martin Spindler

Heuristic Convergence Properties

- a^{*} → N(0, Σ) under standard conditions
- *b*^{*} now depends on product of estimation errors in both nuisance functions
- b* will look like √nn^{-(φm+φℓ)} where n^{-φm} and n^{-φℓ} are respectively appropriate convergence rates of estimators for m(x) and ℓ(x)
- $o(n^{-1/4})$ is often an attainable rate for estimating m(x) and $\ell(x)$

The Double ML estimator $\check{\theta}_0$ is a \sqrt{n} consistent and approximately centered normal quite generally.

Neyman Orthogonality as Key Difference

• Key difference between estimation based on (1) and estimation based on (2) is that (2) satisfies the Neyman orthogonality condition:

Let

$$\eta_0 = (\ell_0, m_0) = \left(\mathrm{E}[Y|X], \mathrm{E}[D|X] \right) \quad, \quad \eta = (\ell, m).$$

The partial derivative of the moment condition (2) with respect to η vanishes:

$$\partial_{\eta} \mathbb{E}[\psi(W, \theta_0, \eta)]\Big|_{\eta=\eta_0} = 0,$$

where W denotes the data (Y, D, X).

- Heuristically, the moment condition remains "valid" under "local" mistakes in the nuisance function.
- This property generally does not hold for the moment condition (1).

Literature and Generalization

Literature

- Linear model: Belloni, Chernozhukov, Hansen (2015), Zhang and Zhang (2015), Bühlmann et al. (2015)
- Instrumental variable estimation: Belloni, Chen, Chernozhukov, Hansen (2012), Chernozhukov, Hansen, Spindler (2015)
- Various treatment effecs: Belloni, Chernozhukov, Fernandez-Val, Hansen (2017)
- Software implementation: R package hdm (Chernozhukov, Hansen, Spindler, 2016), R / Python package doubleML (Bach, Chernozhukov, Kurz, Spindler, 2021a, 2021b)

Literature and Generalization

- Inference about low-dimensional parameters in high-dimensional (linear) models:
 - Belloni, Chernozhukov, Hansen, and coauthors (in a series of papers)
- Inference about high-dimensional parameters by allowing the number of moment condition to grow with sample size:
 - Belloni et al. (2018) "Uniformly Valid Post-Regularization Confidence Regions for Many Functional Parameters in Z-Estimation Framework"
 - Chernozhukov et al. (2017) "Central Limit Theorems and Bootstrap in High Dimensions"

High-dimensional Additive Models

• Additive models are quite popular in statistics, imposing an additive structure to evade curse of dimensionality

$$Y = \beta + f_1(X_1) + \ldots + f_p(X_p) + \varepsilon, \quad \mathbb{E}[\varepsilon|X] = 0$$

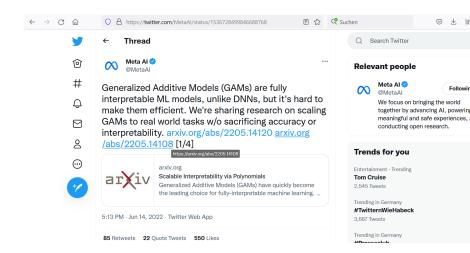
where β denotes a constant and $f_i(\cdot)$ univariate functions.

• We rewrite the model as

$$Y = f_1(X_1) + f_{-1}(X_{-1}) + \varepsilon,$$

where $f_1(X_1)$ with $\mathbb{E}[f_1(X_1)] = 0$ denotes the target component and $f_{-1}(X_{-1})$ is a nuisance function.

Motivation



Literature Review

- Confidence bands under fixed dimension: Härdle (1989), Sun and Loader (1994), Fan and Zhang (2000) and many others
- Estimation rates in high dimensions: Lin and Zhang (2006), Meier et al. (2009), Huang et al. (2010), Kato (2012), Lou et al. (2014) and many others
- Confidence bands in high dimensions: Kozbur (2020), Lu, Kolar and Liu (2020), Gregory, Mammen and Wahl (2021)

Motivation

- **Goal:** Providing uniformly valid confidence bands for the target function $f_1(\cdot)$ in a high-dimensional setting.
- Main idea:

Approximation of each component with sieves:

$$f_1(X_1) = \theta_0^T g(X_1) + b_1(X_1)$$

$$f_{-1}(X_{-1}) = \beta_0^T h(X_{-1}) + b_2(X_{-1}),$$

for a suitable set of approximating functions $g(x) = (g_1(x), \dots, g_{d_1}(x))^T$ and $h(x) = (h_1(x), \dots, h_{d_2}(x))^T$ (e.g. b-splines,...).

• The number of approximating functions *d*₁ may grow with sample size.

Double Machine Learning Framework (1/2)

• Given the approximations, we consider the very high-dimensional regression model

$$Y = \theta_0^T g(X_1) + \beta_0^T h(X_{-1}) + b_1(X_1) + b_2(X_{-1}) + \varepsilon.$$

• Further, assume that

$$g_l(X_1) = (\gamma_0^{(l)})^T Z_{-l} + \nu^{(l)}, \quad \mathbb{E}[\nu^{(l)} Z_{-l}] = 0$$

with $Z := (g_1(X_1), \ldots, g_{d_1}(X_1), h_1(X_{-1}), \ldots, h_{d_2}(X_{-1}))^T$.

• This partially linear model is well known and estimating $\theta_0 = (\theta_{0,1}, \dots, \theta_{0,d_1})$ can be recast into a general Z-estimation problem:

$$\mathbb{E} [\psi_l(W, \theta_{0,l}, \eta_{0,l})] = 0 \quad l = 1, \dots, d_1.$$

Double Machine Learning Framework (2/2)

• The score is given by

$$\psi_{l}(W,\theta,\eta) = \left(Y - \theta g_{l}(X_{1}) - (\eta^{(1)})^{T} Z_{-l} - \eta^{(3)}(X)\right) \\ \cdot \left(g_{l}(X_{1}) - (\eta^{(2)})^{T} Z_{-l}\right).$$

with $\psi_I(W, \theta_{0,I}, \eta_{0,I}) = \varepsilon \cdot \nu^{(I)}$.

• The nuisance parameters are

$$\begin{split} \eta_{0,l}^{(1)} &:= \beta_0^{(l)} = (\theta_{0,1}, \dots, \theta_{0,l-1}, \theta_{0,l+1}, \dots, \theta_{0,d_1}, \beta_{0,1}, \dots, \beta_{0,d_2})^T \\ \eta_{0,l}^{(2)} &:= \gamma_0^{(l)}, \quad \eta_{0,l}^{(3)}(X) := b_1(X_1) + b_2(X_{-1}). \end{split}$$

• The score fulfills the near Neyman orthogonality condition

$$\partial_{\eta}\mathbb{E}[\psi(W,\theta_{0,I},\eta)]|_{\eta=\eta_{0,I}}=o(n^{-1/2}).$$

Challenges (1/2)

• Main Challenge DML provide valid inference on $\theta_0,$ but we are interested in

$$f_1(\cdot) \approx \theta_0^T g(\cdot).$$

- Non-trivial extension of the DML Framework is needed.
- Using b-splines or other local estimators, we have a problem of vanishing eigenvalues:

$$cd_1^{-1} \leq \inf_{\|\xi\|_2=1} \mathbb{E}\left[\left(\xi^{\mathsf{T}}g(X_1)
ight)^2
ight] \leq \sup_{\|\xi\|_2=1} \mathbb{E}\left[\left(\xi^{\mathsf{T}}g(X_1)
ight)^2
ight] = Cd_1^{-1}$$

since $E[g_l(X_l)^2] = O\left(\frac{t_1}{(d_1-t_1+2)}\right)$ where t_1 denotes the number of non-zero elements of g.

Challenges (2/2)

• The lasso estimators need to fulfill

$$\left\|\hat{\beta}_{0}^{(l)} - \beta_{0}^{(l)}\right\|_{2} = o(n^{-1/4}) \text{ and } \left\|\hat{\gamma}_{0}^{(l)} - \gamma_{0}^{(l)}\right\|_{2} = o(n^{-1/4})$$

• On the other hand, we rely on the two approximations

$$f_1(X_1) = \theta_0^T g(X_1) + b_1(X_1)$$

$$f_{-1}(X_{-1}) = \beta_0^T h(X_{-1}) + b_2(X_{-1}),$$

with $\theta_0 \in \mathbb{R}^{d_1}$ and $\beta_0 \in \mathbb{R}^{d_2}$.

We need to ensure that

$$\sup_{x} (b_1(x_1) + b_2(x_{-1})) = o(n^{-1/4}).$$

• There is a trade-off regarding the number of approximating function d_1 and d_2 .

Martin Spindler

Main Theorem

Modifying the Double Machine Learning Framework enables us to provide uniformly valid confidence bands for the target function

$$f_1(x) \approx \theta_0^T g(x).$$

Define

$$\hat{u}(x) := \hat{\theta}^T g(x) + \frac{(g(x)^T \hat{\Sigma}_n g(x))^{1/2} c_\alpha}{\sqrt{n}}$$
$$\hat{l}(x) := \hat{\theta}^T g(x) - \frac{(g(x)^T \hat{\Sigma}_n g(x))^{1/2} c_\alpha}{\sqrt{n}}.$$

Theorem

Under regularity assumptions, it holds

$$P\left(\hat{l}(x) \leq f_1(x) \leq \hat{u}(x), \forall x \in \mathcal{I}\right) \rightarrow 1 - \alpha.$$

Martin Spindler

Simulation Study (1/3)

• Data generating process based on Gregory et al. (2021)

$$Y_i = \sum_{j=1}^p f_j(X_{j,i}) + \varepsilon_i, \quad i = 1, \dots, n$$

with 4 non-zero components and $\varepsilon \sim N(0, 1)$.

- For each component, we use cubic B-Splines with nine degrees of freedom for approximation.
- $X_j \sim \mathcal{U}[-2.5, 2.5]$ and $Cov(X_k, X_l) = 0, 5^{|k-l|}$.

DGP 1 (sine)	$f_1(x) = -\sin(2 \cdot x)$
DGP 2 (quad)	$f_2(x) = x^2 - 25/12$
DGP 3 (line)	$f_3(x) = x$
DGP 4 (expo)	$f_4(x) = \exp(-x) - \frac{2}{5}\sinh(\frac{5}{2})$

Table: Data generating processes in simulation study.

Simulation Study (2/3)

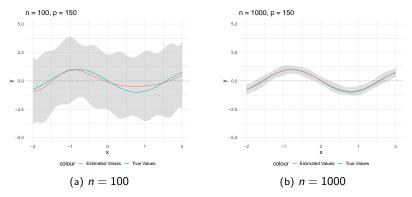


Figure: Exemplary simulation results for $f_1(x) = -\sin(2 \cdot x)$.

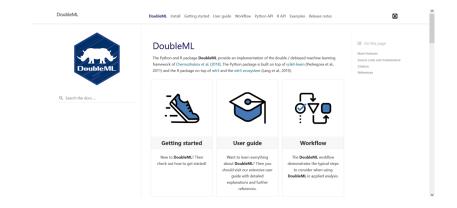
n	р	sine	quad	line	expo
100	150	0.954	0.926	0.942	0.962
100	50	0.912	0.93	0.942	0.948
1000	150	0.932	0.946	0.926	0.938
1000	50	0.936	0.948	0.92	0.954

Table: Simulation results: Coverage achieved by simultaneous confidence bands for $\alpha = 0.05$ over the interval [-1.5, 1.5] in R = 500 repetitions.

Summary of the Paper

- Methodology for uniformly valid confidence bands for a nonparametric function $f_1(X_1)$ in a high-dimensional additive model.
- Non-trivial extension of the DML Framework (details).
- Analysis of regression models in high-dimensions without imposing the strong assumptions of linearity.
- We provide simulation studies (<a>details) and an empirical illustration of the estimation procedure (<a>details).

More on Double Machine Learning



More on Double Machine Learning

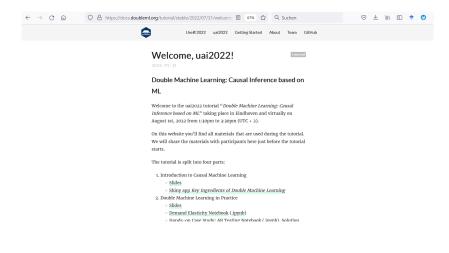


Figure: https://www.auai.org/uai2022/tutorials

Martin	S	pir	١d	ler

Quarter on Causality

More on Double Machine Learning

Applied Causal Inference Powered by ML and AI

Victor Chernozhukov; Christian Hansen; Nathan Kallus Martin Spindler Vasilis Syrgkanis I

August 9, 2022

Publisher: Online

Quarter on Causality

Bibliography

- Belloni, A., Chernozhukov, V., Chetverikov, D. and Wei, Y. (2018). "Uniformly valid post-regularization confidence regions for many functional parameters in z-estimation framework." *Annals of statistics* 46 (6B): 3643.
- Belloni, A., Chernozhukov V. and Hansen, C. (2014). "Inference on treatment effects after selection among high-dimensional controls." The Review of Economic Studies 81 (2): 608-650.
- Bühlmann, P. and Meinshausen, N. (2006). "High-dimensional graphs and variable selection with the lasso." The annals of statistics 34 (3): 1436-1462.
- Chernozhukov, V., Chetverikov, D. and Kato, K. (2017). "Central limit theorems and bootstrap in high dimensions." The Annals of Probability 45 (4): 2309-2352.
- Fan, J. and Zhang, W. (2000). "Simultaneous confidence bands and hypothesis testing in varying-coefficient models." *Scandinavian Journal of Statistics* 27 (4): 715-731.
- Gregory, K., Mammen, E. and Wahl, M. (2021). "Statistical inference in sparse high-dimensional additive models." The Annals of Statistics 49 (3), 1514-1536.
- Härdle, W. (1989). "Asymptotic maximal deviation of M-smoothers." Journal of Multivariate Analysis 29 (2): 163-179.
- Kozbur, D. (2020). "Inference in additively separable models with a high-dimensional set of conditioning variables." Journal of Business and Economic Statistics: 1-17.
- Lu, J., Kolar, M. and Liu, H. (2020). "Kernel meets sieve: Post-regularization confidence bands for sparse
 additive model." Journal of the American Statistical Association: 1-16.
- Sun, J. and Loader, C. R. (1994). "Simultaneous confidence bands for linear regression and smoothing." The Annals of Statistics 22 (3): 1328-1345.
- Van de Geer, S., Bühlmann, P., Ritov, Y. A. and Dezeure, R. (2014). "On asymptotically optimal confidence regions and tests for high-dimensional models." *The Annals of Statistics* 42 (3): 1166-1202.
- Zhang, C. H. and Zhang, S. S. (2014). "Confidence intervals for low dimensional parameters in high dimensional linear models." *Journal of the Royal Statistical Society* Series B: Statistical Methodology: 217-242.

Martin Spindler

University of Hamburg martin.spindler@uni-hamburg.de

The Role of Neyman Orthogonality

• We have the taylor expansion

$$J\sqrt{n}(\hat{\theta}-\theta_0) = A_n + \sqrt{n} DO(\|\hat{\eta}-\eta_0\|) + C\sqrt{n}O(\|\hat{\eta}-\eta_0\|^2) + o_p(1),$$

where A_n is approximately Gaussian under weak conditions.

• Under Neyman orthogonality,

$$D := \partial_{\eta} \mathbb{E}[\psi(W, \theta_0, \eta)]|_{\eta = \eta_0} = 0$$

and thus we only need

$$C\sqrt{n}O(\|\hat{\eta}-\eta_0\|^2) \to 0$$

for \sqrt{n} consistency which requires $\|\hat{\eta} - \eta_0\| = o_P(n^{-1/4})$. • Back

Double Machine Learning Estimator

The score ψ is linear in θ , meaning

$$\psi_{I}(W,\theta,\eta) = \psi_{I}^{a}(X,\eta^{(2)})\theta + \psi_{I}^{b}(X,\eta)$$

with

$$\psi_l^a(X,\eta^{(2)}) = -g_l(X_1)(g_l(X_1) - (\eta^{(2)})^T Z_{-l})$$

and

$$\psi_{l}^{b}(X,\eta) = (Y - (\eta^{(1)})^{T} Z_{-l} - \eta^{(3)}(X))(g_{l}(X_{1}) - (\eta^{(2)})^{T} Z_{-l}).$$

Thus, the estimator is given by

$$\hat{\theta}_I = -\mathbb{E}_n[\psi_I^a(X_i, \hat{\eta}^{(2)})]^{-1}\mathbb{E}_n[\psi_I^b(X_i, \hat{\eta})]$$

for all $l = 1, ..., d_1$.

Proof Snippet

We prove the following Bahadur representation

$$\sup_{x\in I} \left| \sqrt{n} (g(x)^T \Sigma_n g(x))^{-1/2} g(x)^T (\hat{\theta} - \theta_0) \right| = \sup_{x\in I} \left| \mathbb{G}_n(\psi_x) \right| + o_P(1)$$

with

$$\psi_{\boldsymbol{x}}(\cdot) := (g(\boldsymbol{x})^T \Sigma_n g(\boldsymbol{x}))^{-1/2} g(\boldsymbol{x})^T J_0^{-1} \psi(\cdot, \theta_0, \eta_0)$$

where $J_{0,l} = -\mathbb{E}[(\nu^{(l)})^2]$ and

$$\boldsymbol{\Sigma}_{n} = \begin{pmatrix} \frac{\mathbb{E}[(\varepsilon\nu^{(1)})^{2}]}{\mathbb{E}[(\nu^{(1)})^{2}]^{2}} & \frac{\mathbb{E}\left[\varepsilon\nu^{(1)}\varepsilon\nu^{(2)}\right]}{\mathbb{E}[(\nu^{(1)})^{2}]\mathbb{E}[(\nu^{(2)})^{2}]} & \cdots & \frac{\mathbb{E}\left[\varepsilon\nu^{(1)}\varepsilon\nu^{(d_{1})}\right]}{\mathbb{E}[(\nu^{(1)})^{2}]\mathbb{E}[(\nu^{(d_{1})})^{2}]} \\ \frac{\mathbb{E}\left[\varepsilon\nu^{(2)}\varepsilon\nu^{(1)}\right]}{\mathbb{E}[(\nu^{(2)})^{2}]\mathbb{E}[(\nu^{(1)})^{2}]} & \frac{\mathbb{E}[(\varepsilon\nu^{(2)})^{2}]^{2}}{\mathbb{E}[(\nu^{(2)})^{2}]^{2}} & \cdots & \frac{\mathbb{E}\left[\varepsilon\nu^{(2)}\varepsilon\nu^{(d_{1})}\right]}{\mathbb{E}[(\nu^{(2)})^{2}]\mathbb{E}[(\nu^{(d_{1})})^{2}]} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\mathbb{E}\left[\varepsilon\nu^{(d_{1})}\varepsilon\nu^{(1)}\right]}{\mathbb{E}[(\nu^{(1)})^{2}]\mathbb{E}[(\nu^{(1)})^{2}]} & \frac{\mathbb{E}\left[\varepsilon\nu^{(d_{1})}\varepsilon\nu^{(2)}\right]}{\mathbb{E}[(\nu^{(1)})^{2}]\mathbb{E}[(\nu^{(1)})^{2}]} & \cdots & \frac{\mathbb{E}\left[\varepsilon\nu^{(d_{1})}\varepsilon^{2}\right]}{\mathbb{E}[(\nu^{(d_{1})})^{2}]^{2}} \end{pmatrix}$$

٠

Martin Spindler

Quarter on Causality

The critical value c_{α} can be determined by the following multiplier bootstrap method introduced in Chernozhukov et al. (2017). Define

$$\hat{\psi}_{\mathsf{x}}(\cdot) := (g(\mathsf{x})^T \hat{\Sigma}_n g(\mathsf{x}))^{-1/2} g(\mathsf{x})^T \hat{J}_0^{-1} \psi(\cdot, \hat{\theta}_0, \hat{\eta}_0)$$

and let

$$\hat{\mathcal{G}} = \left(\hat{\mathcal{G}}_{x}\right)_{x \in I} = \left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\xi^{(i)}\hat{\psi}_{x}\left(W^{(i)}\right)\right)_{x \in I},$$

where $(\xi^{(i)})_{i=1}^n$ are independent standard normal random variables. The multiplier bootstrap critical value c_{α} is given by the $(1 - \alpha)$ -quantile of the conditional distribution of $\sup_{x \in I} |\hat{\mathcal{G}}_x|$ given $(W^{(i)})_{i=1}^n$.

Empirical Application: Boston Housing Prices (1/2)

• Method applied on the well-known Boston Housing data, with n = 506 observations and p = 11 (continuous) covariates.

$$\begin{split} MEDV_i &= f_1(LSTAT_i) + f_2(CRIM_i) + f_3(ZN_i) + f_4(INDUS_i) + f_5(RM_i) \\ &+ f_6(AGE_i) + f_7(DIS_i) + f_8(TAX_i) + f_9(PTRATIO_i) \\ &+ f_{10}(ETHN_i) + f_{11}(NOX_i) + \epsilon_i. \end{split}$$

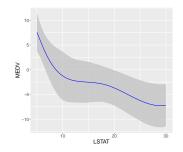


Figure: Estimated $f_1(x)$ with simultaneous 95%-confidence bands.

MEDV	median value of owner-occupied homes in USD 1000's
NOX	nitric oxides
CRIM	per capita crime rate by town
ZN	proportion of residential land zoned for lots over 25,000 sq.ft
INDUS	proportion of non-retail business acres per town
RM	average number of rooms per dwelling
AGE	proportion of owner-occupied units built prior to 1940
DIS	weighted distances to five Boston employment centres
TAX	full-value property-tax rate per USD 10,000
PTRATIO	pupil-teacher ratio by town
BLACK	$1000(B - 0.63)^2$ where B is the proportion of blacks by town
LSTAT	percentage of lower status of the population

Table: List of variables: Boston Housing Data.

_