Beyond ICA: Causal
 Disentanglement via Interventions

Chandler Squires

04/19/2023

Anna Seigal

Nils Sturma

Salil Bhate

Matthias Drton

Caroline Uhler

David Sontag

Goal: Introduce the tools of causal reasoning to new, complex domains.

Known	Known
causal	causal
graph? variables?	

Type 1 domains: causally familiar

Type 2 domains: conceptually familiar

Type 3 domains: conceptually novel

Causal inference

Causal structure learning

Causal representation learning

$$
\begin{array}{lc}
\text { Known } & \text { Known } \\
\text { causal } & \text { causal } \\
\text { graph? variables? }
\end{array}
$$

Type 1 domains: causally familiar

Much heavy lifting is done by humans. Causal relationships are determined from subconscious "common sense" principles or by conscious, domain-specific reasoning.

Analogous to "rule-based" systems in artificial intelligence.

Type 1 domains: causally familiar

Causal inference

Rich and active area of research, including several topics:

- Identifiability and transportability (Shpitser '06, Drton ' 16 , Lee '20)
- Instrumental variable methods (Newey '03, Singh '19)
- Proxy variable methods (Miao '18, Kallus '21)
- Sensitivity analysis
- ...

Known	Known
causal	causal
graph? variables?	

Type 1 domains: causally familiar

Type 2 domains: conceptually familiar

Type 3 domains: conceptually novel

Causal inference

Causal representation learning

x
7

$$
\begin{array}{lc}
\text { Known } & \text { Known } \\
\text { causal } & \text { causal } \\
\text { graph? variables? }
\end{array}
$$

Type 2 domains: conceptually familiar

Causal structure learning

Less heavy lifting is done by humans. Practitioners pick the relevant variables, often by designing technologies to measure these variables. Machines learn the causal relationships.

Analogous to "feature engineering" in machine learning.

Type 2 domains: conceptually familiar

Causal structure learning

My own "home" area of research, very active area:

- Differentiable approaches (Zheng ' 18 , Lachapelle '19, Brouillard ' 20)
- Bayesian methods (Friedman '03, Lorch '21, Castelletti '22)
- Interventions and multiple environments (Eaton '07, Hauser '12, Mooii '20)
- Targeted approaches (Peters ' 16 , Wang '18)
- Experimental design (Eberhardt ‘ 05 , Hyttinen ' 13 , Agrawal '19)

$$
\begin{array}{lc}
\text { Known } & \text { Known } \\
\text { causal } & \text { causal } \\
\text { graph? variables? }
\end{array}
$$

Type 1 domains: causally familiar

Type 2 domains: conceptually familiar

Type 3 domains: conceptually novel

Causal inference

Causal structure learning

Causal representation learning

Known Known causal causal graph? variables?

Type 3 domains: conceptually novel

Causal representation learning

Involves high-dimensional measurements of complex systems with which humans have little or no direct experience. Thus, it is infeasible to rely on humans for any heavy lifting.

Analogous to "feature learning" in machine learning.

$$
\begin{array}{lc}
\text { Known } & \text { Known } \\
\text { causal } & \text { causal } \\
\text { graph? variables? }
\end{array}
$$

Type 3 domains: conceptually novel

Causal representation learning

An emerging area of research

- Learning latent DAGs from observational data (Silva '06, Cai '19, Kivva '21, Xie '22)
- Causal feature learning (Chalupka ' $15,{ }^{\prime} 16,{ }^{\prime} 17$)
- Domain generalization (Ariovsky '19, Rosenfeld '20, Zhou '22)
- Learning latent DAGs from paired counterfactual data (Brehmer '22, Ahuja '22)
- Learning latent DAGs from interventional data (Ahuia '22, Liu '22, Squires '23, Varici '23)
-...

$$
\begin{array}{lc}
\text { Known } & \text { Known } \\
\text { causal } & \text { causal } \\
\text { graph? variables? }
\end{array}
$$

Type 1 domains: causally familiar

Type 2 domains: conceptually familiar

Type 3 domains: conceptually novel

Causal inference

Causal structure learning

Causal representation learning

Long-term goal: Treat representation learning, structure learning, and inference as a single pipeline.

In line with Bin Yu's vision of considering the entire "data science life cycle".

Causal representation learning

Vapnik's principle: When solving a problem of interest, do not solve a more general problem as an intermediate step.

Two addenda to Vapnik's principle

- The "hidden structure" principle.
- Optimally solving the problem of interest might require leveraging hidden structure that is only apparent when solving the general problem.
- Estimating composite functions (Baraud '14)
- Prediction-centric learning (Karzand ' 15 , Bresler ' 16 , Boix-Adsera '21)
- Semi-parametric inference: need to estimate "nuisance functions".
- If we solve an intermediate problem, we must take that into account: avoid simply "plugging in".
- The "first move" principle.
- The general problem can be a rich source of intuition and insight.
- Good place to develop techniques.

The first move:
Causal Disentanglement

Macro-variables

View causal representation from a generative modeling perspective.

Can we infer the latent

 variables?Permutation indeterminacy: the macrovariables can always be re-labeled so that $1,2,3, \ldots, d$ is a topological order.

Micro-variables

Possible approaches

Restrict latent DAG \mathcal{G}

Restrict mixing function g

Learning from interventions

Linear ICA (Comon 1994)
Nonlinear ICA (Hyvärinen '19)

Most work on latent DAG recovery (Silva '06, Halpern '15, Cai '19, Kivva '21, Xie '20, Xie '22)

Squires '23
Liu '22, Ahuja '22, Varici '23

Control

$Z_{1}=f_{1}\left(\varepsilon_{1}\right)$

$$
Z_{2}=f_{2}\left(Z_{1}, \varepsilon_{2}\right)
$$

$$
\begin{aligned}
& Z_{1}=f_{1}^{\prime}\left(\varepsilon_{1}\right) \\
& Z_{2}=f_{2}^{\prime}\left(Z_{1}, \varepsilon_{2}\right)
\end{aligned}
$$

$$
Z_{1}=f_{1}\left(\varepsilon_{1}\right)
$$

$$
Z_{2}=f_{2}^{\prime \prime}\left(Z_{1}, \varepsilon_{2}\right)
$$

$Z_{d}=f_{d}\left(Z_{1}, Z_{2}, \ldots, \varepsilon_{d}\right)$
$Z_{d}=f_{d}\left(Z_{1}, Z_{2}, \ldots, \varepsilon_{d}\right)$
$Z_{d}=f_{d}\left(Z_{1}, Z_{2}, \ldots, \varepsilon_{d}\right)$

Do-intervention
Perfect intervention

Soft intervention (mechanism shift)

Replaces mechanism

$$
Z_{2}=\hat{z}_{2}
$$ with a constant

Removes dependence of

$$
Z_{2}=f_{2}^{\prime}\left(\varepsilon_{2}\right)
$$ parents

Changes mechanism to

$$
Z_{2}=f_{2}^{\prime}\left(Z_{1}, \varepsilon_{2}\right)
$$ any function

Wishlist

- Identifiability theory
- Given any set of interventions, what indeterminacies remain (similar to Markov equivalence)?
- Algorithms
- Score-based (e.g., penalized maximum likelihood)
- Exact search
- Greedy search
- Gradient-based search
- Statistical and computational theory
- Minimax rates
- Rate-optimal algorithms

Linear Causal Disentanglement via Interventions

Chandler Squires, Anna Seigal, Salil Bhate, Caroline Uhler

Limitations

1. Single-node interventions
2. Linear mixing
3. Linear latent causal model

Control

$G \in \mathbb{R}^{p \times d}$ with full column rank

$$
\begin{array}{lll}
Z_{1}=\sigma_{1} \varepsilon_{1} & Z_{1}=\sigma_{1}^{\prime} \varepsilon_{1} & Z_{1}=\sigma_{1} \varepsilon_{1} \\
Z_{2}=A_{12} Z_{1}+\sigma_{2} \varepsilon_{2} & Z_{2}=A_{12} Z_{1}+\sigma_{2} \varepsilon_{2} & Z_{2}=A_{12}^{\prime} Z_{1}+\sigma_{2}^{\prime} \varepsilon_{2}
\end{array}
$$

$$
\begin{array}{r}
Z_{d}=A_{1 d} Z_{1}+A_{2 d} Z_{2} \\
+\cdots+\sigma_{d} \varepsilon_{d}
\end{array}
$$

$$
\vdots
$$

$$
\begin{array}{rr}
Z_{d}=A_{1 d} Z_{1}+A_{2 d} Z_{2} & Z_{d}=A_{1 d} Z_{1}+A_{2 d} Z_{2} \\
+\cdots+\sigma_{d} \varepsilon_{d} & +\cdots+\sigma_{d} \varepsilon_{d}
\end{array}
$$

Compact version:

$$
\text { In context } k, Z=A_{k} Z+\Omega_{k}^{1 / 2} \varepsilon .
$$

Equivalently,

$$
Z=B_{k}^{-1} \mathcal{\varepsilon} \quad \text { for } B_{k}=\Omega_{k}^{-1 / 2}\left(I-A_{k}\right)
$$

Input:

Output:

such that $\Theta_{k}=H^{\top} B_{k}^{\top} B_{k} H$ for all k.

Theorem (perfect interventions): one intervention per latent node is sufficient, and in the worst-case, necessary, to recover $H=G^{\dagger}$ and $B_{0}, B_{1}, \ldots, B_{K}$.
 Note: "Recovery" is only up to an indeterminacy that comes from re-labeling nodes.

Theorem (soft interventions): one intervention per latent node is sufficient, and in the worst-case, necessary, to recover \mathcal{G} up to transitive closure.

Note: "Recovery" is only up to an indeterminacy that comes from re-labeling nodes.

Proof of sufficiency (perfect interventions)

$$
\begin{aligned}
& v^{\otimes 2}=\boldsymbol{v} v^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& B_{0}^{\top} B_{0}=\square+\square+\ldots+\square \square \\
& \left(B_{0}^{\top} \boldsymbol{e}_{1}\right)^{\otimes 2} \quad\left(B_{0}^{\top} \boldsymbol{e}_{2}\right)^{\otimes 2} \quad\left(B_{0}^{\top} \boldsymbol{e}_{d}\right)^{\otimes 2} \\
& B_{k}^{\top} B_{k}=\square+\square+\square+\square \\
& \left(B_{k}^{\top} \boldsymbol{e}_{1}\right)^{\otimes 2} \quad\left(B_{0}^{\top} \boldsymbol{e}_{2}\right)^{\otimes 2} \quad\left(B_{0}^{\top} \boldsymbol{e}_{d}\right)^{\otimes 2} \\
& \Rightarrow B_{k}^{\top} B_{k}-B_{0}^{\top} B_{0}=\left(B_{k}^{\top} \boldsymbol{e}_{i_{k}}\right)^{\otimes 2}-\left(B_{0}^{\top} \boldsymbol{e}_{i_{k}}\right)^{\otimes 2} \\
& \Rightarrow \Theta_{k}-\Theta_{0}=\left(H^{\top} B_{k}^{\top} \boldsymbol{e}_{i_{k}}\right)^{\otimes 2}-\left(H^{\top} B_{0}^{\top} \boldsymbol{e}_{i_{k}}\right)^{\otimes 2}
\end{aligned}
$$

Key identity:

$$
\Theta_{k}-\Theta_{0}=\left(H^{\top} B_{k}^{\top} \boldsymbol{e}_{i_{k}}\right)^{\otimes 2}-\left(H^{\top} B_{0}^{\top} \boldsymbol{e}_{i_{k}}\right)^{\otimes 2}
$$

$$
H^{\top} B_{k}^{\top} \boldsymbol{e}_{i_{k}}=\sum_{i \in \overline{p a}\left(i_{k}\right)}\left(B_{k}\right)_{i_{k}, i} \boldsymbol{h}_{i}
$$

Thus, rowspan $\left(\Theta_{k}-\Theta_{0}\right) \subseteq\left\langle\boldsymbol{h}_{i}: i \in \overline{p a}\left(i_{k}\right)\right\rangle$
$\Rightarrow \Theta_{k}-\Theta_{0}$ is rank one if i_{k} is a source node.

In fact, $\Theta_{k}-\Theta_{0}$ is rank two if i_{k} is not a source node.

Essential idea of the algorithm:

1. Use rank test to find source nodes.
2. Recover corresponding row of H up to scale.
3. "Get rid of" source nodes and repeat.
"Getting rid of" nodes:

- Form a vector space V from the already-recovered rows of H.
- Project $\Theta_{k}-\Theta_{0}$ onto the orthogonal complement of V.
- Subtleties involved in recovering a row of H instead of an orthogonal basis for H.

Other remarks on theoretical results

- Worst-case necessity: If we are missing an intervention on a sink node (a node with no children), we can't recover the corresponding row of H.
- Soft interventions: We can only recover the graph up to transitive closure, for example, we can't tell apart the two graphs below.

A hypothetical workflow

Biological application:

- Single-cell RNA sequencing of 90,000 lung cancer cells
- Contexts: $K=83$ mutations of the KRAS oncogene
- Used $p=83$ most variable genes as observed X variables.

G12 and G13 positions of

 KRAS: key functional residues that are known causal drivers of cancer.

Ongoing work

Extension to multi-node interventions

Álvaro Ribot

Cathy Cai

Extension to non-linear mixing

Jiaqi Zhang

Unpaired Multi-Domain Causal Representation Learning

Nils Sturma, Chandler Squires, Matthias Drton, Caroline Uhler

Multiple modalities

- Humans process the world through sight, sound, smell, touch, taste...
- Each input modality gives information about different, possibly overlapping, aspects of the world.
- Taken together, multiple modalities provide a richer picture than any single modality can provide on its own.

Multiple modalities in biology

Technological limitation:

- Most experimental technologies (RNA sequencing, microscopic imaging, and chromatin conformation capture) destroy the cell in the process of measurement.
- Thus, we never observe samples from the joint distribution P_{X} over $\left(X^{1}, X^{2}, \ldots, X^{m}\right)$, but only from the marginals $P_{X^{1}}, P_{X^{2}}, \ldots, P_{X^{m}}$.

- This prevents the use of prior group ICA / multiset canonical correlation analysis methods (Calhoun 2001, Nielsen 2002, Beckman 2005, Richard 2021, ...)
- These methods assume access to paired data, e.g., different subjects in an fMRI experiment have corresponding time points or voxels.

Goals (phase 1):

- Recover P, the distribution over the exogenous variables $\boldsymbol{\varepsilon}=\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{8}$.
- Recover the joint mixing matrix $M: \varepsilon \mapsto\left(X_{1}, X_{2}, X_{3}\right)$.

The pushforward distribution $M \# P$ is the joint distribution P_{X}.

Step 1: Perform linear ICA separately in each domain.

Step 2: Match latent distributions between domains based on KolmogorovSmirnov testing.

Step 2: Match latent distributions between domains based on KolmogorovSmirnov testing.

Step 3: Merge latent spaces

Assumptions:

(C1) Exogenous variables have unit variance (w.l.o.g.), are non-symmetric, and have distinct distributions up to sign (i.e., $d\left(P_{i}, P_{j}\right)>0, d\left(P_{i},-P_{j}\right)>0$ for all $i \neq j$).
(C2) The latent SCM and the mixing functions are linear, i.e. $X^{e}=G^{e} Z$ for each domain $e \in[m]$. The stacked mixing matrix $G=\left[G^{1} ; G^{2} ; \ldots ; G^{m}\right]$ is full column rank.

Theorem: Suppose access to $m \geq 2$ domains. Under (C1) and (C2), P and M are recoverable.

Note: "Recovery" is only up to an indeterminacy that comes from re-labeling nodes.

Additional results:

1. Matching gets better with more modalities. Each added modality (assuming enough samples) gives another estimate of the distributions of the shared latent variables. Enforcing transitivity between matches gives better power for a fixed false discovery rate.
2. Latent graph recovery. After recovering, we can use standard techniques involving restrictions on g to recover the latent graph.

Future Work

- Nonlinear setting
- Would provide identifiability theory for several existing approaches (e.g., Yang '21)
- Combining interventions and multiple modalities

Type 1 domains: causally familiar

Type 2 domains: conceptually familiar

Type 3 domains: conceptually novel

Causal inference

Causal representation learning

Selected References

Agrawal, R., Squires, C., Yang, K., Shanmugam, K., \& Uhler, C. (2019). Abcd-strategy: Budgeted experimental design for targeted causal structure discovery.
Ahuja, K., Wang, Y., Mahajan, D., \& Bengio, Y. (2022) Interventional Causal Representation Learning.
Ahuja, K., Hartford, J. S., \& Bengio, Y. (2022). Weakly supervised representation learning with sparse perturbations.
Arjovsky, M., Bottou, L., Gulrajani, I., \& Lopez-Paz, D. (2019). Invariant risk minimization.
Baraud, Y., \& Birgé, L. (2014). Estimating composite functions by model selection.
Beckmann, C. F., \& Smith, S. M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Boix-Adsera, E., Bresler, G., \& Koehler, F. (2022, February). Chow-Liu++: Optimal prediction-centric learning of tree Ising models.
Brehmer, J., De Haan, P., Lippe, P., \& Cohen, T. S. (2022). Weakly supervised causal representation learning.
Cai, R., Xie, F., Glymour, C., Hao, Z., \& Zhang, K. (2019). Triad constraints for learning causal structure of latent variables.
Calhoun, V. D., Adali, T., Pearlson, G. D., \& Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Chalupka, K., Eberhardt, F., \& Perona, P. (2017). Causal feature learning: an overview.

Comon, P. (1994). Independent component analysis, a new concept?
Eaton, D., \& Murphy, K. (2007, March). Exact Bayesian structure learning from uncertain interventions.
Gradu, P., Zrnic, T., Wang, Y., \& Jordan, M. I. (2022). Valid Inference after Causal Discovery.
Heinze-Deml, C., Peters, J., \& Meinshausen, N. (2018). Invariant causal prediction for nonlinear models.
Hyvarinen, A., Sasaki, H., \& Turner, R. (2019). Nonlinear ICA using auxiliary variables and generalized contrastive learning.
Kivva, B., Rajendran, G., Ravikumar, P., \& Aragam, B. (2021). Learning latent causal graphs via mixture oracles.
Mooii, J. M., Magliacane, S., \& Claassen, T. (2020). Joint causal inference from multiple contexts.
Richard, H., Ablin, P., Thirion, B., Gramfort, A., \& Hyvarinen, A. (2021). Shared Independent Component Analysis for Multi-Subject Neuroimaging.
Rosenfeld, E., Ravikumar, P., \& Risteski, A. (2020). The risks of invariant risk minimization.
Peters, J., Bühlmann, P., \& Meinshausen, N. (2016). Causal inference by using invariant prediction: identification and confidence intervals.
Silva, R., Scheines, R., Glymour, C., Spirtes, P., \& Chickering, D. M. (2006). Learning the Structure of Linear Latent Variable Models.
Wang, Y., Squires, C., Belyaeva, A., \& Uhler, C. (2018). Direct estimation of differences in causal graphs.
Zheng, X., Aragam, B., Ravikumar, P. K., \& Xing, E. P. (2018). Dags with no tears: Continuous optimization for structure learning.

Extra Slides

Recovery up to re-labeling

$$
\sigma_{1}=(1,2,3)
$$

$$
\sigma_{2}=(1,3,2)
$$

$S(\mathcal{G})$: permutations consistent with \mathcal{G} ($\sigma(j)>\sigma(i)$ for all edges $j \rightarrow i)$

Permutation matrix: $\left(P_{\sigma}\right)_{i j}=\mathbb{1}_{i=\sigma(j)}$

$$
B_{k}^{\sigma}=P_{\sigma} B_{k} P_{\sigma}^{\top} \quad \mathrm{H}^{\sigma}=P_{\sigma} H
$$

$$
\begin{aligned}
& B_{0}=\left[\begin{array}{ccc}
\left(B_{0}\right)_{11} & \left(B_{0}\right)_{12} & \left(B_{0}\right)_{13} \\
0 & \left(B_{0}\right)_{22} & 0 \\
0 & 0 & \left(B_{0}\right)_{33}
\end{array}\right] \\
& \begin{array}{l}
B_{1}=\left[\begin{array}{ccc}
\left(B_{0}\right)_{11} & \left(B_{0}\right)_{12} & \left(B_{0}\right)_{13} \\
0 & \left(B_{0}\right)_{22} & 0 \\
0 & 0 & \left(B_{1}\right)_{33}
\end{array}\right] \\
B_{2}=\left[\begin{array}{ccc}
\left(B_{0}\right)_{11} & \left(B_{0}\right)_{12} & \left(B_{0}\right)_{13} \\
0 & \left(B_{2}\right)_{22} & 0 \\
0 & 0 & \left(B_{0}\right)_{33}
\end{array}\right]
\end{array} \\
& B_{3}=\left[\begin{array}{ccc}
\left(B_{3}\right)_{11} & \left(B_{3}\right)_{12} & \left(B_{3}\right)_{13} \\
0 & \left(B_{0}\right)_{22} & 0 \\
0 & 0 & \left(B_{0}\right)_{33}
\end{array}\right] \\
& H=\left[\begin{array}{llll}
H_{11} & H_{12} & \ldots & H_{1 p} \\
H_{21} & H_{22} & \ldots & H_{2 p} \\
H_{31} & H_{32} & \ldots & H_{3 p}
\end{array}\right] \\
& H^{\sigma_{2}}=\left[\begin{array}{llll}
H_{11} & H_{12} & \ldots & H_{1 p} \\
H_{31} & H_{32} & \ldots & H_{3 p} \\
H_{21} & H_{22} & \ldots & H_{2 p}
\end{array}\right]
\end{aligned}
$$

Synthetic data results

(a) Error in estimating H

(b) Error in estimating B_{0}

(c) Intervention targets

