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Goal: Introduce the tools of causal 
reasoning to new, complex domains.
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Known 
causal 
graph?

Known 
causal 

variables?

Causal representation learning

Causal inference

Causal structure learning

Type 1 domains:
causally familiar

Type 3 domains:
conceptually novel

Type 2 domains:
conceptually familiar
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Known 
causal 
graph?

Causal inference
Type 1 domains:
causally familiar

Known 
causal 

variables?

Much heavy lifting is done by humans. Causal relationships are 
determined from subconscious “common sense” principles or by 

conscious, domain-specific reasoning.

Analogous to “rule-based” systems in artificial intelligence.
5



Known 
causal 
graph?

Causal inference
Type 1 domains:
causally familiar

Rich and active area of research, including several topics:
• Identifiability and transportability (Shpitser ’06, Drton ‘16, Lee ‘20)

• Instrumental variable methods (Newey ‘03, Singh ‘19)

• Proxy variable methods (Miao ‘18, Kallus ’21)

• Sensitivity analysis
• …

Known 
causal 

variables?
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Known 
causal 
graph?

Known 
causal 

variables?

Causal structure learning
Type 2 domains:

conceptually familiar

Less heavy lifting is done by humans. Practitioners pick the 
relevant variables, often by designing technologies to measure 

these variables. Machines learn the causal relationships.

Analogous to “feature engineering” in machine learning.
8



Known 
causal 
graph?

Known 
causal 

variables?

Causal structure learning
Type 2 domains:

conceptually familiar

My own “home” area of research, very active area:
• Differentiable approaches (Zheng ‘18, Lachapelle ’19, Brouillard ‘20)

• Bayesian methods (Friedman ‘03, Lorch ‘21, Castelletti ’22)

• Interventions and multiple environments (Eaton ‘07, Hauser ‘12, Mooij ’20)

• Targeted approaches (Peters ‘16, Wang ’18)

• Experimental design (Eberhardt ‘05, Hyttinen ‘13, Agrawal ’19)

• … 9
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Known 
causal 
graph?

Known 
causal 

variables?

Causal representation learning
Type 3 domains:
conceptually novel

Involves high-dimensional measurements of complex systems 
with which humans have little or no direct experience. Thus, it is 

infeasible to rely on humans for any heavy lifting.

Analogous to “feature learning” in machine learning.  
11



Known 
causal 
graph?

Known 
causal 

variables?

Causal representation learning
Type 3 domains:
conceptually novel

An emerging area of research
• Learning latent DAGs from observational data (Silva ’06, Cai ’19, Kivva ‘21, Xie ‘22)

• Causal feature learning (Chalupka ’15, ‘16, ’17)

• Domain generalization (Arjovsky ’19, Rosenfeld ’20, Zhou ‘22)

• Learning latent DAGs from paired counterfactual data (Brehmer ’22, Ahuja ‘22)

• Learning latent DAGs from interventional data (Ahuja ‘22, Liu ‘22, Squires ‘23, Varici ‘23)

• … 12
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Causal representation learning

Causal inference

Causal structure learning

Long-term goal: Treat 
representation learning, 
structure learning, and 
inference as a single 
pipeline.
In line with Bin Yu’s vision of 
considering the entire “data 
science life cycle”.

14



Causal representation learning

Causal inference

Causal structure learning

Domain 
generalization
(Arjovsky ‘19)

Future work

Invariant causal prediction
(Peters ‘16, Heinze-Deml ‘18)

Post-selection inference
(Chernozhukov ‘15, Gradu ’22)

Decision-centric causal 
structure learning 
(ongoing work)

Davin Choo
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Vapnik’s principle: When solving a problem 
of interest, do not solve a more general 

problem as an intermediate step.
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Two addenda to Vapnik’s principle

• The “hidden structure” principle.
• Optimally solving the problem of interest might require leveraging 

hidden structure that is only apparent when solving the general problem.
• Estimating composite functions (Baraud ‘14)

• Prediction-centric learning (Karzand ‘15, Bresler ’16, Boix-Adsera ‘21)

• Semi-parametric inference: need to estimate “nuisance functions”.
• If we solve an intermediate problem, we must take that into account: avoid 

simply “plugging in”.

• The “first move” principle.
• The general problem can be a rich source of intuition and insight.
• Good place to develop techniques. 17



The first move:
Causal Disentanglement
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Macro-variables

Micro-variables

𝑍! 𝑍" 𝑍#…

𝑋!	𝑋"	𝑋$ 	 …	 …	 …	 𝑋%

𝑔

View causal representation 
from a generative modeling 
perspective.

Can we infer the latent 
variables?

Permutation indeterminacy: the macro-
variables can always be re-labeled so that 
1,2,3,…,d is a topological order.
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Macro-variables

Micro-variables

𝑍! 𝑍" 𝑍#…

𝑋!	𝑋"	𝑋$ 	 …	 …	 …	 𝑋%

𝑔

Cellular 
Biology Neuroscience

• Protein 
concentrations

• Cellular 
morphology (e.g. 
nucleus shape)

• Fluorescent 
microscopy 
images

• Gene expression 
(RNAseq)

• Neurotransmitter 
concentrations

• Reuptake rate

• Neuroimaging 
data (fMRI)

• Electrical activity 
(LFP)
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Possible approaches
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Restrict latent 
DAG 𝒢

Linear ICA (Comon 1994)
Nonlinear ICA (Hyvärinen ‘19)

𝑍! 𝑍" 𝑍#…

𝑋!	𝑋"	𝑋$ 	 …	 …	 𝑋%

𝑔

Restrict mixing 
function 𝑔

Most work on latent DAG recovery
(Silva ‘06, Halpern ’15, Cai ‘19, 

Kivva ’21, Xie ‘20, Xie ‘22)

𝑍! 𝑍" 𝑍#…

𝑋!	𝑋"	𝑋$ 	 …	 …	 𝑋%

Learning from 
interventions

𝜁"𝜁! 𝜁&

Squires ‘23
Liu ‘22, Ahuja ’22, Varici ‘23

𝑍! 𝑍" 𝑍#…

𝑋!	𝑋"	𝑋$ 	 …	 …	 𝑋%

𝑔

…
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𝑍! = 𝑓! 𝜀!
𝑍" = 𝑓" 𝑍!, 𝜀"
      ⋮

𝑍# = 𝑓# 𝑍!, 𝑍", … , 𝜀#

𝜁"𝜁! 𝜁&

𝑍! 𝑍" 𝑍#…

… 𝑍! = 𝑓!' 𝜀!
𝑍" = 𝑓"' 𝑍!, 𝜀"
      ⋮

𝑍# = 𝑓# 𝑍!, 𝑍", … , 𝜀#

𝑍! = 𝑓! 𝜀!
𝑍" = 𝑓"'' 𝑍!, 𝜀"
      ⋮

𝑍# = 𝑓# 𝑍!, 𝑍", … , 𝜀#

Control …

Do-intervention 𝑍! = �̂�!Replaces mechanism
with a constant

Perfect intervention Removes dependence of 
parents

Soft intervention
(mechanism shift)

Changes mechanism to 
any function

𝑍! = 𝑓!" 𝜀!

𝑍! = 𝑓!" 𝑍#, 𝜀!

More 
general
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Wishlist

• Identifiability theory
• Given any set of interventions, what indeterminacies remain (similar to Markov 

equivalence)?

• Algorithms
• Score-based (e.g., penalized maximum likelihood)

• Exact search
• Greedy search
• Gradient-based search

• Statistical and computational theory
• Minimax rates
• Rate-optimal algorithms

24



Linear Causal Disentanglement 
via Interventions

Chandler Squires, Anna Seigal, Salil Bhate, Caroline Uhler
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Limitations

1. Single-node interventions
2. Linear mixing
3. Linear latent causal model

26



Upper 
triangular

𝑍! = 𝜎!𝜀!
𝑍" = 𝐴!"𝑍! + 𝜎"𝜀"
      ⋮

𝑍# = 𝐴!#𝑍! + 𝐴"#𝑍"
 +⋯+ 𝜎#𝜀#

Control …

𝑍! = 𝜎!'𝜀!
𝑍" = 𝐴!"𝑍! + 𝜎"𝜀"
      ⋮

𝑍# = 𝐴!#𝑍! + 𝐴"#𝑍"
 +⋯+ 𝜎#𝜀#

𝑍! = 𝜎!𝜀!
𝑍" = 𝐴!"' 𝑍! + 𝜎"'𝜀"
      ⋮

𝑍# = 𝐴!#𝑍! + 𝐴"#𝑍"
 +⋯+ 𝜎#𝜀#

Compact version: 
In context 𝑘, 𝑍 = 𝐴$𝑍 + Ω$

#/!𝜀.

Equivalently, 
𝑍 = 𝐵$&#𝜀 for 𝐵$ = Ω$

&#/! 𝐼	 − 𝐴$ .

𝜁"𝜁! 𝜁&

𝑍! 𝑍" 𝑍#…

…

𝑋 = 𝐺𝑍

𝐺 ∈ ℝ'	×* with 
full column rank

27



𝑝
𝑑

𝑑

𝑝

𝜀

𝑍

𝑋

𝐵$𝐵$&#

𝐻𝐺

Cov 𝜀 &# = 𝐼*

Cov$ 𝑍 &# = 𝐵$+𝐵$

Θ$ ≔ Cov$ 𝑋 &# = 𝐻+𝐵$+𝐵$𝐻

𝐻 = 𝐺( 
28



Input:
…

Θ) Θ! Θ" Θ&

…

Output:

𝐻 𝐵)

𝑖!

𝐵!

𝑖"

𝐵"

𝑖&

𝐵&

such that Θ$ = 𝐻+𝐵$+𝐵$𝐻 for all 𝑘.
29



Theorem (soft interventions): one intervention per latent node is 
sufficient, and in the worst-case, necessary, to recover 𝒢 up to transitive 
closure.
Note: “Recovery” is only up to an indeterminacy that comes from re-labeling nodes.

Theorem (perfect interventions): one intervention per latent node is 
sufficient, and in the worst-case, necessary, to recover 𝐻 = 𝐺, and 
𝐵-, 𝐵#, … , 𝐵. .
Note: “Recovery” is only up to an indeterminacy that comes from re-labeling nodes.

30



Proof of sufficiency (perfect interventions)
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+ + +…=

𝐵 𝒆!𝒃!*= 𝒆!𝒃!* 𝒆#𝒃#*+ + +…

32



+ + +…+ + +…

+ +…+

𝐵* 𝐵

𝒃!
⊗" 𝒃"

⊗" 𝒃#
⊗"

=

𝒗⊗" = 𝒗𝒗*	 33



+ +…+

𝐵,*𝒆!
⊗"

𝐵)*𝒆" ⊗" 𝐵)*𝒆# ⊗"

=𝐵,*𝐵,

+ +…+

𝐵)*𝒆! ⊗" 𝐵)*𝒆" ⊗" 𝐵)*𝒆# ⊗"

=𝐵)*𝐵)

⇒ 𝐵,*𝐵, 	− 𝐵)*𝐵) = 𝐵,*𝒆-!
⊗" − 𝐵)*𝒆-!

⊗"

⇒ Θ, − Θ) = 𝐻*𝐵,*𝒆-!
⊗" − 𝐻*𝐵)*𝒆-!

⊗"
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Key	identity:
Θ$ − Θ- = 𝐻+𝐵$+𝒆/!

⊗! − 𝐻+𝐵-+𝒆/!
⊗!

𝐻+𝐵$+𝒆/! =	 F
/∈'2(/!)

𝐵$ /!,/𝒉/

𝐻

Thus, rowspan Θ$ − Θ- ⊆ ⟨𝒉/ ∶ 𝑖 ∈ 𝑝𝑎 𝑖$ ⟩

⇒ Θ$ − Θ- is rank one if 𝑖$ is a source node.
35



Essential idea of the algorithm:

1. Use rank test to find source nodes.
2. Recover corresponding row of 𝐻 up to scale.
3. “Get rid of” source nodes and repeat.

In fact, Θ$ − Θ- is rank two if 𝑖$ is not a source node.

“Getting rid of” nodes:
• Form a vector space 𝑉 from the already-recovered rows of 𝐻.
• Project Θ$ − Θ- onto the orthogonal complement of 𝑉.
• Subtleties involved in recovering a row of 𝐻 instead of an 

orthogonal basis for 𝐻.
36



Other remarks on theoretical results

• Worst-case necessity: If we are missing an intervention on a sink node 
(a node with no children), we can’t recover the corresponding row of 𝐻.
• Soft interventions: We can only recover the graph up to transitive 

closure, for example, we can’t tell apart the two graphs below.

𝑍! 𝑍" 𝑍$ 𝑍! 𝑍" 𝑍$
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A hypothetical workflow

38



Biological application:
• Single-cell RNA sequencing of 90,000 lung cancer cells
• Contexts: 𝐾 = 83 mutations of the KRAS oncogene
• Used 𝑝 = 83 most variable genes as observed 𝑋 variables.

39



G12 and G13 positions of 
KRAS: key functional residues 
that are known causal drivers 
of cancer.

40



Ongoing work

Extension to multi-node interventions

Álvaro Ribot Cathy Cai

Extension to non-linear mixing

Jiaqi Zhang
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Unpaired Multi-Domain Causal 
Representation Learning

Nils Sturma, Chandler Squires, Matthias Drton, Caroline Uhler
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Multiple modalities

• Humans process the world through sight, sound, smell, touch, taste…
• Each input modality gives information about different, possibly 

overlapping, aspects of the world.
• Taken together, multiple modalities provide a richer picture than any 

single modality can provide on its own.

43



Multiple modalities in biology

Gene expression Fluorescent imaging Chromosome organization

Chromatin accessibility Protein expression

…

44



𝑋#

𝑔#

𝑋!

𝑋6𝑔!

𝑔6

Shared 
latent 
spaceModality-

specific
latent space
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𝑍! 𝑍" 𝑍.…

𝑋#

𝑔#

𝑍/

𝑍0 𝑍1

𝑍2

𝑍3

𝑋!

𝑋6𝑔!

𝑔6
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Technological limitation:
• Most experimental technologies (RNA sequencing, microscopic imaging, 

and chromatin conformation capture) destroy the cell in the process of 
measurement.
• Thus, we never observe samples from the joint distribution 𝑃7 over 
(𝑋#, 𝑋!, … , 𝑋8), but only from the marginals 𝑃7" , 𝑃7# , … , 𝑃7$.

𝑿#
4uE6m

5mF9r

9yQ2e

𝑿!
1aC8x

4rT0k

9w44q

3zU2w

𝑿68sS2v

2eG1r
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• This prevents the use of prior group ICA / multiset canonical correlation 
analysis methods (Calhoun 2001, Nielsen 2002, Beckman 2005, Richard 2021, ...)

• These methods assume access to paired data, e.g., different subjects in an 
fMRI experiment have corresponding time points or voxels.

𝑿#
1ms

2ms

3ms
𝑿6

1ms

2ms

3ms

𝑿!
1ms

2ms

3ms
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𝑍! 𝑍" 𝑍.…

𝑋#

𝑔#

𝑍/

𝑍0 𝑍1

𝑍2

𝑍3

𝑋!

𝑋6𝑔!

𝑔6
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𝜀! 𝜀" 𝜀.…

𝑋#

𝑀!

𝜀/

𝜀0 𝜀1

𝜀2

𝜀1

𝑋!

𝑋6𝑀"

𝑀$

Goals (phase 1):
• Recover 𝑃, the distribution over the exogenous variables 𝜺 = 𝜀#, 𝜀!, … , 𝜀9.
• Recover the joint mixing matrix 𝑀: 𝜺 ↦ 𝑋#, 𝑋!, 𝑋6 .

50
The pushforward distribution 𝑀#𝑃 is the joint distribution 𝑃4.



Step 1: Perform linear ICA separately in each domain.

𝑀#
,

̂𝜀/

̂𝜀2

𝑀!
,

𝑃7#

̂𝜀!

̂𝜀"

̂𝜀.

𝑃7"

̂𝜀$

̂𝜀/

̂𝜀2

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$

𝑀6
,

𝑃7%

̂𝜀/

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$
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Step 2: Match latent distributions between domains based on Kolmogorov-
Smirnov testing.

̂𝜀/

̂𝜀2

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$

̂𝜀/

̂𝜀2

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$

̂𝜀/

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$
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Step 2: Match latent distributions between domains based on Kolmogorov-
Smirnov testing.

̂𝜀/

̂𝜀2

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$

̂𝜀/

̂𝜀2

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$

̂𝜀/

̂𝜀!

̂𝜀"

̂𝜀.

̂𝜀$
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Step 3: Merge latent spaces

̂𝜀/

̂𝜀2

̂𝜀!
̂𝜀"

̂𝜀.

̂𝜀$

̂𝜀0

̂𝜀1

̂𝜀3
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Assumptions:
(C1) Exogenous variables have unit variance (w.l.o.g.), are non-symmetric, 
and have distinct distributions up to sign (i.e., 𝑑 𝑃/ , 𝑃: > 0, 𝑑 𝑃/ , −𝑃: > 0 
for all 𝑖 ≠ 𝑗).
(C2) The latent SCM and the mixing functions are linear, i.e. 𝑋; = 𝐺;𝑍 for 
each domain 𝑒 ∈ [𝑚]. The stacked mixing matrix 𝐺 = [𝐺#; 𝐺!; … ; 𝐺8] is 
full column rank.

Theorem: Suppose access to 𝑚 ≥ 2 domains. Under (C1) and (C2), 𝑃 
and 𝑀 are recoverable.
Note: “Recovery” is only up to an indeterminacy that comes from re-labeling nodes.
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Additional results:
1. Matching gets better with more modalities. Each added modality 

(assuming enough samples) gives another estimate of the distributions of 
the shared latent variables. Enforcing transitivity between matches gives 
better power for a fixed false discovery rate.

2. Latent graph recovery. After recovering, we can use standard techniques 
involving restrictions on 𝑔 to recover the latent graph.
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Future Work

• Nonlinear setting
• Would provide identifiability theory for several existing 

approaches (e.g., Yang ‘21)

• Combining interventions and multiple modalities

57
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Causal representation learning

Causal inference

Causal structure learning

Type 1 domains:
causally familiar

Type 3 domains:
conceptually novel

Type 2 domains:
conceptually familiar
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Recovery up to re-labeling
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𝑍" 𝑍$

𝑍!

𝜁" 𝜁!

𝜁$

𝑍$ 𝑍"

𝑍!

𝜁" 𝜁!

𝜁$

𝑆(𝒢): permutations consistent with 𝒢 
(𝜎 𝑗 > 𝜎 𝑖  for all edges 𝑗 → 𝑖)

Permutation matrix: 𝑃< /: =	𝟙/=<(:)
𝐵$< = 𝑃<𝐵$𝑃<+ H< = 𝑃<𝐻

𝜎# = (1, 2, 3) 𝜎! = (1, 3, 2)
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𝑍" 𝑍$

𝑍!

𝜁" 𝜁!

𝜁$

𝑍$ 𝑍"

𝑍!

𝜁" 𝜁!

𝜁$

𝐵) =
𝐵) !! 𝐵) !" 𝐵) !$
0 𝐵) "" 0
0 0 𝐵) $$

𝐵! =
𝐵) !! 𝐵) !" 𝐵) !$
0 𝐵) "" 0
0 0 𝐵! $$

𝐵" =
𝐵) !! 𝐵) !" 𝐵) !$
0 𝐵" "" 0
0 0 𝐵) $$

𝐵$ =
𝐵$ !! 𝐵$ !" 𝐵$ !$
0 𝐵) "" 0
0 0 𝐵) $$

𝐻 =
𝐻!! 𝐻!" … 𝐻!%
𝐻"! 𝐻"" … 𝐻"%
𝐻$! 𝐻$" … 𝐻$%

𝐵)
5" =

𝐵) !! 𝐵) !$ 𝐵) !"
0 𝐵) $$ 0
0 0 𝐵) ""

𝐵!
5" =

𝐵) !! 𝐵) !$ 𝐵) !"
0 𝐵! $$ 0
0 0 𝐵) ""

𝐵"
5" =

𝐵) !! 𝐵) !$ 𝐵) !"
0 𝐵) $$ 0
0 0 𝐵" ""

𝐵$
5" =

𝐵$ !! 𝐵$ !$ 𝐵$ !"
0 𝐵) $$ 0
0 0 𝐵) ""

𝐻5" =
𝐻!! 𝐻!" … 𝐻!%
𝐻$! 𝐻$" … 𝐻$%
𝐻"! 𝐻"" … 𝐻"%
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Synthetic data results
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Extras

𝑑 = 5 latent variables
𝑝 = 10 observed variables
500 random models, Erdős-Rényi structure with density 0.75
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