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Precision medicine

Caring for the Individual Patient:

Understanding Heterogeneous Treatment Effects a

• one-size-fits-all approaches are inadequate

• treatments should be tailored to individuals based

on heterogeneity of clinical characteristics and

their personal preferences

a National Academy of Medicine, 2018

An individualized treatment regime (ITR) is a (deterministic) decision

rule that assigns personalized treatments based on patients’ individual

characteristics
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Randomized Control Trial (RCT) & Real-World Data (RWD)

Cures enhances our ability to modernize clinical

trial designs, including use of real-world evidence: a

Electronic health record (EHR) data, medical

claims data, product or disease registry data, etc. b

a 21st Century Cures Act, 2016
b FDA Guidance

Complementary features of different data sources:

Randomized control trial :

• gold standard (internal validity)

• restrictive inclusion/exclusion criteria, etc.

Observational study (RWD) :

• representative of target pop. (external validity)

• confounding bias
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https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/21st-century-cures-act
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/submitting-documents-using-real-world-data-and-real-world-evidence-fda-drug-and-biological-products


Transfer learning

Cannot directly apply the RCT-optimal ITR on another population

Covariate shift between the RCT and target population
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Dash line: RCT-optimal ITR. Blue line: target optimal ITR.

Red points: positive treatment effects
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Summary of contributions

• Heterogeneity within and across populations

• Data integration: e.g. combining randomized trials and

observational data (target)

Goal: learn the optimal ITR that generalizes well to the target

population (transfer learning)

• For interpretability and transparency, use parametric (linear) ITRs

(true optimal ITR not necessarily parametric)

• Clinical outcome: right-censored survival data

• Construction of efficient and robust estimators using

semi-parametric efficiency theory
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Related works

Large literature on optimal ITR using trial or observational data:

• Q-learning (Robins 2004)

• A-learning (Murphy 2003)

• Direct value search (Zhang et al. 2012)

• Classification perspective (Zhao et al. 2012)

• Tree or list-based ITRs (Laber & Zhao 2015)

• Survival data (Goldberg & Kosorok 2012)

Transfer learning / generalizability ...

• Distributionally robust optimization (Mo et al. 2021)

• Sensitivity analysis (Sahoo et al. 2022)

• Combine trials and observational studies (Colnet et al. 2023)

Limitations: only use a single data; few development for survival data
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Setup: vanilla causal survival analysis

Data:

• covariates X ∈ X ⊆ Rp, treatment A ∈ A = {0, 1}
• T (a) potential outcome of survival time under treatment a

• censoring time C , observed time U = min{T ,C}, event indicator
∆ = I{T ≤ C}

Consider some deterministic transformation function y(·)

• survival probability at time t: y(T ) = I{T ≥ t}
• restricted mean survival time (RMST): y(T ) = min(T , L) with some

pre-specified maximal time horizon L

Under classical causal assumptions: consistency, positivity,

unconfoundedness, conditionally independent censoring,

⇒ Identification of E [y(T (a))] by the outcome regression (OR), inverse

probability weighting (IPW), and also doubly robust (DR) formulas
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Setup: ITR and value function

ITR d(x) : X → A a mapping from the covariate space X to the

treatment space A

Define the potential outcome T (d) under any ITR d ∈ D:

T (d) = d(X )T (1) + (1− d(X ))T (0),

⇒ The value function of d is V (d) = E [y(T (d))]

⇒ The optimal ITR is dopt = argmaxd∈D V (d)

Consider a class of parametric ITRs dη, indexed by η. Let V (η) = V (dη).

We focus on linear ITRs:

Dη = {dη : dη(X ) = I{ηT X̃ ≥ 0}, |ηp+1| = 1}, where X̃ = (1,XT )T

Population parameter η∗ indexing the optimal ITR:

η∗ = argmaxV (η),

and the optimal value function is V (η∗)
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Setup: illustration of data structure

2 data sources: RCT (source) and observational data (target)

Target super population

(unknown) Source sampling IS (known) Target sampling IT

Complete source sample

{Ti (1),Ti (0),Xi , IS,i = 1, IT ,i = 0}ni=1

Complete target sample

{Ti (1),Ti (0),Xi , IS,i = 0, IT ,i = 1}n+m
i=n+1

Treatment assignment A

Censoring C
Only observe covariates X

Observed source sample

{Xi ,Ai ,Ui ,∆i , IS,i = 1, IT ,i = 0}ni=1

Observed target sample

{Xi , IS,i = 0, IT ,i = 1}n+m
i=n+1

observed time U = min{T ,C}, event indicator ∆ = I{T ≤ C}
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Identification assumptions for generalization

Assume standard causal assumptions hold for the RCT (source), and

• Survival mean exchangeability

E [y(T (a)) | X , IS = 1] = E [y(T (a)) | X ] for every a ∈ A,

• Positivity of Source Inclusion 0 < Pr(IS = 1 | X ) < 1 almost surely,

• Known target design The target sample design weight

e(x) = 1/Pr(IT = 1 | X = x) is known by design.

In our framework, we have the key identity that for any g(X )

E

[
IS

πS(X )
g(X )

]
= E [IT e(X )g(X )] = E [g(X )],

where πS(X ) = Pr(IS = 1 |X ) is the sampling score.

⇒ this motivates the calibration weighting (CW) approach.
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Identification results for generalization

The value function V (d) can be identified by the IPW formulas: 1

E

[
IS

πS(X )︸ ︷︷ ︸
IPSW/CW

I{A = d(X )}
πd(X )

∆ y(U)

SC (U | A,X )︸ ︷︷ ︸
naive IPW

]
,

and the OR formulas:

E [IT e(X )︸ ︷︷ ︸
target

E [y(T ) | A = d(X ),X , IS = 1]︸ ︷︷ ︸
Outcome Regression in source

], ORt

E

[
IS

πS(X )︸ ︷︷ ︸
CW

E [y(T ) | A = d(X ),X , IS = 1]

]
, CW-OR

1πd (x) = Pr(A = d(x) | X = x , IS = 1), SC (t | a, x) = Pr(C > t | A = a,X = x)
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Calibration weighting

Assign weights q to subjects in the source to empirically match the

target population

Convex optimization problem:

min
n∑

i=1

qi log qi

subject to the balancing constraint:

n∑
i=1

qig(Xi )︸ ︷︷ ︸
source

=
n+m∑
i=n+1

e(Xi )g(Xi )︸ ︷︷ ︸
target

and qi > 0,
∑n

i=1 qi = 1.

• other objective functions can be used

• specify g(x): mean and higher order moments; sieve approximation

• favorable robustness
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An efficient and robust estimation procedure

We also derive the efficient influence function (EIF) of V (d):

• construction of efficient estimator: Augmented Calibration

Weighting (ACW) not displayed for simplicity

• double robustness: consistent under M1

⋃
M2

• cross-fitting procedure for flexible ML methods

4 nuisance parameters:

M1 survival outcome model: µ(a, x) = E [y(T ) | A = a,X = x ]

M2 • treatment assignment: πA(x) = Pr(A = 1 | X = x)

• source sampling: πS(x) = Pr(IS = 1 | X = x)

• censoring: SC (t | a, x) = Pr(C > t | A = a,X = x)

Doubly robustness, semiparametric efficiency hold for general ITR d

without parametric restriction
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Asymptotic properties I

Assume S(t; η) = Pr(T (dη) > t) is twice continuously differentiable in a

neighborhood of η∗, and the margin condition Pr(0 < |ηT X̃ | < δ) = O(δ), 2

we have

• Ŝ(t; η) → S(t; η) for any η and 0 < t ≤ L

•
√
N
{
Ŝ(t; η)− S(t; η)

}
converges weakly to a mean zero Gaussian

process for any η

• N1/3 ∥η̂ − η∗∥2 = Op(1)

•
√
N
{
Ŝ(t; η̂)− S(t; η∗)

}
→ N (0, σ2

t,1)

Under certain conditions, same results hold for the cross-fitted estimator.

Readily extended to a broad class of functionals of survival distributions (Yang

et al. 2021)

2There exists some constant δ0 > 0 such that the big-O term is uniform in 0 < δ < δ0
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Asymptotic properties II

In comparison with V̂DR the standard doubly robust estimator using only

source sample:

1) When covariate distributions of the source and target

populations are the same, both
√
N{V̂DR(η)− V (η)} and√

N{V̂CF (η)− V (η)} are asymptotically normal with mean zero and

same variance.

2) If dopt ∈ Dη, i.e., d
opt = dη∗ , then despite covariate shift

• both the maximizers of V̂DR(η) and V̂CF (η) converge to η∗,

• however, V̂DR(η) is a biased estimator of V (η).
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Simulations: (semi)parametric models

O: outcome

S: source sampling

A: treatment assignment

C: censoring

T/W: correctly/mis-

specified

Different methods:

• Naive: source only

• weighting:

IPSW, CW-IPW

• outcome regression:

CW-OR, ORt

• ACW: our proposal
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Simulations: machine learning methods
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Random forest (grf) for nuisance parameters estimation

Sample size: n ≃ 3000,m ≃ 8000

16



Real data application

Sodium bicarbonate therapy for patients with severe metabolic acidaemia

in the intensive care unit

• BICAR-ICU: multi-center, open-label, randomized controlled, phase

3 trial

• OS: prospective, multiple-center observational study

SEPSIS AKIN SOFA SEX AGE

BICAR-ICU (n = 387) 236 (60.98%) 181 (46.77%) 10.12 (3.72) 237 (61.24%) 63.95 (14.41)

OS (m = 193) 99(51.30%) 75 (38.86%) 9.10 (4.54) 122 (63.21%) 62.73 (17.49)

Summary of baseline characteristics of the BICAR-ICU trial sample and the OS sample. Mean

(standard deviation) for continuous and number (proportion) for the binary covariate.
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Real data application

We consider the class of linear ITRs that depend on five variables

D = {I{η1 + η2SEPSIS + η3AKIN + η4SOFA + η5SEX + η6AGE > 0} :

η1, . . . , η6 ∈ R, |η6| = 1},

with the aim to maximize the RMST within 28 days in ICU stay.

• estimated optimal ITR η̂ACW = (22.9,−36.1, 87.4,−9.8, 33.7, 1.0)T

• estimated value function V̂ (η̂ACW) = 19.52 days, with 95%

confidence interval [17.74, 21.30]

• RCT-optimal ITR V̂ (η̂DR.RCT) = 15.37
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