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Outline

e Lecture 1&2 (Monday): Introduction of
causal discovery and causal-learn.

e Lecture 3 (Tuesday): Lab for small
projects.

e Lecture 4 (Thursday): Presentations



Project

* Ilexible small projects

* Incorporating causal discovery into any topics of mnterests.
* Demo, analysis, report, complaint...

* Groups of one or two people.

* T'imeline:
1. By Monday 23:59: Grouping information. Send 1t to
vujiazh@cmu.edu or Slack channel.
2. Tuesday afternoon: Guided lab to work on projects.
3. Thursday afternoon: Small presentations. Length

depends on the grouping information.


mailto:yujiazh@cmu.edu

A Big Picture of Causal Discovery

® Necessity of causality
® Causality from observational data

® Quick examples on the advancements



A Problem with Photo
Categorization by Google Photos
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A Bit Noise can Dramatically
Change Machines’ Decision
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An adversarial input, overlaid on a typical image, can cause a classifier to miscategorize a
panda as a gibbon.

(Goodfellow, 2015)



Artificial “Intelhigence”

® Traditional machine learning usually assumes a fixed data

distribution; avoids overfitting

® Intelligence: understanding; control/intervention;
decomposability; information tusion, learning with few
examples, extrapolation



Causality EXamp1€S

France

EUROFE

the housework than in
1an study has ;

| Divorce rates are far higher among g
does the lion’s sha

those where the woman
 found. ::




Causality Examples

those where
found.




Causality vs. Dependence

® Causality = dependence ! Dependence => causality

T USED T THINK. THEN T TOOK A | | SOUNDS LKE THE
CORRELATION mHJED STATISTICS CLASS, r:m'ss HELPED.

T

(http://imgs.xkcd.com/comics/correlation.png)

X and Y are associated iff X 1s a cause of Y 1ff
3x, # X, P(Y|X=x,) # P(Y[X=x,) X, # X, P(Y|set X=x,) # P(Y]set X=x,)



http://imgs.xkcd.com/comics/correlation.png

Classic Ways to
Find Causal

Information (1.1.d.

Case)

® What if Xand Y are
dependent?

® What if you change X and
see Y also changes?

® What if you manipulate X
and see Y also changes?

® A manipulation directly

changes only the target
variable X




Causal Discovery

Possible to

discover causal information (specific
properties of the true process)

from purely observational data ?
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Causality Examples
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(Simple) Causal Discovery as an
Estimation Problem




Temporal Order Often Helpful.
[.I.D. Case More Dithicult.

First, Next and Last




HEHHHT

~ ‘causal-learn

Uncover Causality from
Observational Data?

® Causal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993)
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- conditional independence among variables;
Y - independent noise condition;
slippery - minimal (and independent) changes...

wet ground

Footprint of causality in data

® Causal discovery (Spirtes et al., 1998)/ causal representation learning (Schélkopf
et al., 2021): find such representations with 1dentihiability guarantees

® Three dimensions of the problem:

i d. data? Parametric Latent
B " constraints? confounders?
Yes No No

| No Yes Yes




Causal Discovery mn Archeology: An Example

i.i.d. data?

Parametric
constraints? confounders?

Thanks to Marlijn Noback

® 8 variables of 250 skeletons collected from different locations
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Result of PC on the Archeology Data 'i"éz/
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Thanks to collaborator Marlijn Noback

® By PC algorithm (Spirtes et al., 1993) + kernel-based conditional
independence test (Zhang et al., 2011)

attrition %
paramasticatory
behavior

9 o
cranial shape differentiation



Result on the Archeology Data

Thanks to collaborator Marlijn Noback

® 3 variables of 250 skeletons collected from different locations
® Different dimensions (from 1 to 255) with nonlinear dependence

® By PC algorithm + kernel-based conditional independence test
(Zhang et al., 2011)
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Underlying
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Mental Conditions?

A Problem 1 Psychology

® 50 questions for big 5 personality test

race age engnat gender hand source country E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N1 N2 N3 N4 N5 N6 N7 N8 N9 N1i0 A1 A2 A3 A4 At

L

us
us

53

1

PK
RO
usS
us
us

14

L)

19
25

L

31

20

L

IN

23

US
usS
IT

39

L]

18

17

CT)

IN

15

us
UsS
usS
us
FR
us
GB

22

W

21

L]

28

21

19

Ly

21

N

5

26
26

L)

US

13| 46

11

13

13

13

13



Learning Hidden Variables & Their Relations

| i d. data? Parametric Latent
T ] constraints? confounders?
Yes No No
| No Yes Yes

® Measured variables (e.g., answer scores in psychometric questionnaires)

were generated by causally related latent variables

Latent vanables &
their causal structure

X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8
42 |36 | 65 | 6.8 |96 | 76| 27|48

38 (19| 65|73 |89|69]11]46 Ly /—\
4.2 | 34 | 65 |1 69 |95 | 74 | 25| 4.6 :

iscovery: Ho
4.2 | 2.2 6.2 6.9 | 9.6 | 7.2 | 1.9 | 4.8
3.9 | 1.9 6.5 6.8 | 9.0 |1 6.8 | 1.7 | 4.4
40 (20| 64 | 72 |91 ] 70| 1.0 | 4.6

3. |1.7 1 64 | 73 |90 ]|67)]08]43
41 | 28 | 65 | 69 |93 |67 | 27|46

.

® Tind latent variables L; and their causal relations ?

EICHELE

® Rank deficiency or GIN helps solve the problem



Fxample: Big 5 Questions Are Well Designed
but...

Big 5:
openness; conscientiousness; extraversion; agreeableness; neuroticism

[06!' I do not have

a good imagination.

[09] I spend time

reflecting on things. ‘\\\\ . o
[E].O I am quiet k\\. EXtraverSIon Neur°t|C|sm

around strangers.

[05] | have

excellent ideas.

[03] I have a vivid

imagination.

[010] I am full of

ideas.

—

[E9] I don't min;m*x
the center of attention. \\_E [NG] I get [N 1] I get
[ES] 1 don't like to draw\x [NS] lam upset easily. stressed out easily.

attention to myself. \\ias"v disturbed. [N4] I seldom
[EG] I have little to say. - feel blue.

[NZ] | am relaxed

most of the time.

[ ] [EZ] | don't talk a lot.
O7]1am quick to

understand things.

Openness

[E?] I talk to a lot of
different people at parties.

[E3] 1 feel comfortable

around people. [El] I am the life of the party. h

[04] I am not interested

in abstract ideas.

difficulty
understanding
abstract ideas.

rich vocabulary.

[E5] | start conversations.

N3
[E-q] I keep in the background. !bout]tll'nm:;.w

[08] | use difficult

words.

[NQ] I get

irritated easily.

NS] I have

requent
mood swings

[AlD] I make

‘ people feel at ease.

[N?] It:l:halnge
[ﬂ3] | insult people. my mood a lot.
o 5 ,//, [AZ] Ian?
Conscientiousness  [C5] eechore: ;me,ested npeople. [A9] 1 fectather Agreeableness

[CS] I shirk my duties.
[Cﬂ-] I make a T

mess of things.

[C7] 1 ke order. «—

/, / _— Ly [AS] I take time
(\ - ,:___________.-—--"" out for others.
L_Zj == = [A?] | am not really

: interested in others.
\\ \ A[C3] | pay attention to details.

[A1] 1 feel little

S - e [AG] 1 have a
[Cl] lamalways | AN \[CQ] I follow a schedule concern for others. “a soft heart.
AN . v
prepared. v \ [AS] I am not interested in
[C].U] lam ‘ LCZ] | leave my “ £C6] | often forget to put things [Aq-] I sympathize with other people’s problems.
exacting in my work. elongings around. ack in their proper place. others' feelings.

5o Nice results by Xinshuai Dong


https://en.wikipedia.org/wiki/Conscientiousness

Learning Latent Causal Dynamics

iid. data? T arametric Latent Learn the underlying causal dynamics from
T " constraints? confounders? their mixtures?

No “lime-delayed” influence renders latent
processes & their relations 1identihiable

Yes

Yes

atent temporal causa
processes zi; can be recovered if

- ‘a1 & u o F\E{er[l)s;‘:rs)zavt:;?gn they follow Causal 9’ — 0-=—0 9 Ougg
- _; Learning - completely s:sé‘itgr';
| FY SN " nonparametric model; or
'j { f?‘? gifj‘ furthermore,
‘ | X, — non-stationary noise; or
Time-series Inputs {x,}7_, — 8(z , non-stationary causal Recovered Iatent

processes

Latent processes

influence, or

= Yao, Chen, Zhang, “Causal Disentanglement for Time Series,” NeurlPS 2022
= Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,”
ICLR 2022



Results on Video Data

® Tor easy interpretation, consider two simple video data sets

® KiTTiMask: a video dataset ~ ® Mass-spring system: a video
ol biary pedestrian masks dataset with ball movement
and mnvisible springs

Learned

T Interpretation
KITTIMaSk latent processes p M . Learned Interpretation

. . dSS-SPIIILS atent processes

Zt-1 Zt  (Movement ]
O O ing direction) z} g (x- & 4

2 5 . coordinates
t—1 Zt (Movement in an 23 of the 5 balls)
@, ’Oorthogonal direction) t
3 3 z;

Zt—l Zt . /
O O (Size)

= Yoo, Chen, Zhang, “Learning Latent Causal Dynamics,” NeurlPS 2022
= Yoo, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,”
ICLR 2022









Causal Discovery: A Bit of History

Reichenbach’s common cause principle (“The Direction of Time”,

1956)
Markov condition (Kuver et al., 1984)

“Causation, Prediction, and Search” (Spirtes, Glymour, & Scheines,

1993)

® TFaithfulness condition, PC algorithm, SGS, FCI, Tetrad program...

“Causality: Models, Reasoning and Inference” (Pearl, 2000)
Greedy equivalence search (GES) (Chickering, 2003)

Functional causal model-based methods (LiINGAM, PNL... since
2005)

Latent varnable recovery: Factor analysis (Spearman, 1904), Tetrad
condition (Spearman & CMU), Latent tree structure (Pearl et al.,
1989), measurement model (CMU 2006), GIN (GDUT & CMU),
rank deficiency (CMU)...

THE
DIRECTION
OF TIME

CAUSALITY

"‘“: SECONDEDITION \

~— MODELS, RE \SO\IIRG
AND INFERENCE

JUDEA PEARL




Graphical Models

® Graphical models
® d-separation

® Connection between conditional independence in graphs
and that in data?

® Causal interpretations?



Intuitive Way of Representing
and Visualizing Relationships

Born an
<> Catenta
ven Day
Yellow
Fingers
Attention
Allergy @
Caughmg

27



Graphical Models

® A graph comprises nodes (also called vertices) connected by links
(also known as edges or arcs)

® probabilistic graphical models: graph-based representation as the
basis for compactly encoding a complex distribution

® Node: a random variable (or group of random variables)
® Links: direct probabilistic interactions between them

® Categorization: Undirected graphs vs. directed acyclic graphs (DAGs)

Probability theory + graph theory
AN

represent uncertainty & o .
intuitively appealing interface for humans

interface models to data
28



Directed Acyclic Graphical Models

P(C=F) P{C=T)

® Also known as Bayesian networks or
belief nets
® Two components ¢ Josmese (o)  Jetey ot
F ‘-:n.s 0.5 ’ / F | o8 02
® Graph structure (qualitative e T o2 os
specification) N

FEFE Lo 0.0

TE | Q1 0.8

® vrior knowledge of causal/modular
relationships, or expert knowledge

ET | Ol 09

T T| 201 Q99

® |carned from data

Terms:
® Conditional probability nodes, edge, adjacent,
distributions (CPDs) oath:
® discrete variables : conditional parents, children, spouses,
distribution tables (CPTs) ancestors, descendants,

® continuous variables: SEMs
29



Tasks Related to Bayesian Networks

P[C=F) P[C=T)
® probabilistic inference: Calculate 0s 03
P(variables of interest | observed Coop)

variables)

® Most common task where we — & [PS=ReET @ ¢ |eir=r pe=T)

. Eo[ @3 03 4 // F | 0z 02
want to use BayeS|an networks « |oe ou @

T 0.2 0.8

® How to find P(S=1|W=1)?

) F\'L. PIW=F) PIW=T)
P(R:]| W:])? FF| 10 0O
TE | Q1 0
® Parameter learning st [o1 o
T T( ©O01 099

® Structure learning: Learning the
structure of the graphical model
from observations

30



Bayesian Networks: Story

® Breakthrough in early 1980s (by Pearl et al.)

® |nh a joint probability distribution, every variable is, in general, related
to all other variables.

® pPearl and others realized:

® |t is often reasonable to make the assumption that each variable is
directly related to only a few other variables

® This leads to modularity: Allowing decomposing a complex model
into small manageable pieces

® Giving rise to Bayesian networks

31



What Independence
Relationships Can You See?

oN cav
m

Cham slippery
ground

vellow
finger

falling down

32



(Local) Markov Condition

slippery

ground

falling down

® Each variable is independent from its non-descendants given its
parents

33



For Instance, What Independence
Relations can You See?

Born an
<> Catenta
ven Day
Yellow
Fingers
Attention
Allergy @
Caughmg

34



Is Local Markov Condition
Enough?

® Can we see whether two arbitrary variables, Xand Y, are
conditionally independent given an arbitrary set of variables, Z ?

Born an
<> Cinba

ven Day

Yellow .
Canctio

Attention
Atersy D) s Canee)
Coughing .

35




D-Separation Tells Conditional
Independence

® |f every path from a node in X to a node in Y is d-separated by Z, then X
and Y are always conditionally independent given Z

® J: directional... You will see why

Born an
@ Peer Pressure @
ven Dav
Yellow .
Coanctio
Attention
Allergy @ Disorder
Coughing .
e G




D-Separation

® A set of nodes Z d-separates two sets of nodes X and Y if every path
from a node in Xto a node in Y is blocked given Z.

® A path pis blocked by a set of nodes Z if

® p contains a chain =11/ or a common cause | <>/ such that
the middle node misin Z, or

® p contains a collider [ M€~/ such that the middle node m is in not Z

and no descendant of misin Z
X =R — S —T [ =——\—>Y
X =—R eep § =" = &=——\/—>Y 1 1 1
i} P
X and Y d-separated by {R, V}: W p 0

; ?
S and U d-separated by {R, V}: X and Y d-separated by {R, P}?

37



D-Separation

® A set of nodes Z d-separates two sets of nodes X and Y if every path
from a node in Xto a node inY is blocked given Z.

® A path pis blocked by a set of nodes Z if

® p contains a chain 21—/ or a ‘*

common cause | €M1/ such that
the middle node misin Z, or

® p contains a collider [ M€/ such

that the middle node mis notinZ
and no descendantof misin Z

A and E d-separated by B ?
A and E d-separated by {B, M} ?

38



D-Separation: Intuition

eer Press Born an
eer Pressure
ven Day

® Suppose X and Y are d-
separated by Z

® ThenifyoufixZ, Xand Y
® do not cause each other and
® do not share a common cause

® X and Y are independent R_’T\ /V

(conditional on Z)! %
1. X and Y d-separated by {R}?
2. X and Y d-separated by {R, T}?
3. X and Y d-separated by {T, V}?
4. X and V d-separated by @ ?




D-Separation: Intuition (2)

T t

Given Z... conditioning on Z {given the same value of Z)



Local & Global Markov
Conditions

® | ocal Markov condition:

® |n a DAG, a variable Xis
independent of all its non-
descendants given its parents

eer Press Born an
eer Pressure
ven Dav

Attention
Disorder
Coughing .

® Global Markov condition:

® Given a DAG, let Xand Y be two
variables and Z be a set of
variables that does not contain
Xor Y. IfZd-separates Xand ¥,
then XILY | Z.

® Actually equivalent on DAGs!

41



Markov Blanket

® |h a DAG, the Markov Blanket of a node X is the set consisting of
® parents of X
® Children of X
® Parents of children (i.e., spouses) of X

® |n a DAG, a variable X is conditionally independent from all other
variables given its Markov Blanket /@\
® |mplied by d-separation...

® The Markov blanket of / ? Q /@\\

42



We learn DAGs. Are They Always
Causal?

® Causality is not only conditional independence.

® How can we be sure the DAG is causal

43



Causal DAGs

® Bayesian networks: DAGs SPRINKLER (%) (%3) RAIN

® Causal DAGs

® More meaningful & able to represent and respond
to external or spontaneous changes

SPRINKLER \
— ON

What 1s
Px3=on(X1,X2,X4,X5)?

44



Structural Causal Models
@SEASON

® . _ 1 ) i—
Xi ﬁ(PAl’ El)fl ]""’n SPRINKLER®/ \®RMN

® Ei: exogenous variables / errors / disturbances \“/WET
!
® Fach equation represents an autonomous (Xs) SLIPPERY
mechanism
® Describes how nature assigns values to PA, ~ Xi

variables of interest X = E,

® Distinction between structural equations & X2 =f2(X1 B2)
X3 =f3(X1,E3),

algebraic equations Xe=12(X3, X2, Ey),
X5 = f5 (X4, Es5)

® Associated with graphical causal models

45



We can See Cl Relations from

DAGS...

® | bcal Markov condition

® Global Markov condition

® J-separation implies conditional independence:

P(V), where V denotes the set of variables, obeys the global Markov con-
dition (or property) according to DAG G if for any disjoint subsets of variables

X, Y, and Z, we have

X and Y are d-separated by Zin g — X

Y|Z.



Cl from Data...

® We are able to see Cl relationships from DAGs.

® How can we see that from data?

® Useful to find information of the underlying DAG, especially
under the faithfulness assumption

47



Independence in Linear-
Gaussian Case

® |fxand Yare jointly normally distributed, their independence &
their zero correlation

® Zero correlation can be tested with, say, Fisher’s z test




Conditional Independence in Linear-
Gaussian case: Partial Correlation

® partial correlation: “Relationship”

between X and Y while eliminating influence

of Z :
/ \ <B,Z>
X Y

® Regress X and Y on Z, respectively

Ryz

® pPartial correlation pxyzis the

correlation between residuals Rxz and
Ryz

® |f X, Y, and Z are jointly normally
distribution, XY | Z & pxyz=0

® \We can then test for zero partial
correlation (‘partialcorr’ in MATLAB)

49



What Intormation Helps Find Causality?

® Connection between causal structure and statistical data
under suitable assumptions

® Note this “irrelevance”:

If there is no common cause of X and Y, the generating
process for cause X is irrelevant to (“independent” from) that
generates effect Y from X

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes...

slippery

wet ground



Causal Sufficiency

® A set of random variables Vis causally
sufficient if V contains every common
cause (with respect to V) of any pair of

variables in V @
® v={X7YZ}: causally sufficient

® v={X7Y}: causally insufficient

® Methods exist in causally insufficient
cases, €¢.g., FCI (Chapter 6 of the SGS
book)

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)



V-Structures

Qd winD <snow>

slippery
ground

Why so interesting?



Going from Cl to Graph?

X and Y are d-separated by Zin g — X 1L Y |Z.

® Contrapositive:
® Conditional dependence implies d-connection
® \What if variables are conditionally independent?

® Can we recover the property of the underlying graph from Cl
relations with Markov condition?

® Arbitrary P(V) would satisfy the global Markov condition
according to G' in which there is an edge between each pair
of variables: trivial !

® Under what assumptions can we have Cl = d-separation?



Causal Structure vs. Statistical Independence (SGS, et
al.)

Causal Markov condition: each variable is ind. of its non-descendants (non-

effects) conditional on its parents (direct causes)

Statistical
independence(s)

causal structure

(causal graph)
Y>X>Z
- Y I Z]|X
Y--X--77

Faithfulness: all observed (conditional) independencies are entailed  Markov

condition in the causal graph

Recall: YILZ ©P(Y|Z)=P(Y); YLZ|X ©P(Y|Z,X)=P(Y|X)




Faithfulness Assumption

® One may find independence between health condition & risk of
mortality and between swimming skills & risk of drowning. Why?

it - @ @
condition
b
healthy risk of
—
Ilfestyle drowning

® E g, if they are linear-Gaussian and a=-bc, then health _condition
Il risk_mortality, which cannot by seen from the graph!

® Faithfulness assumption eliminates this possibility!



Constraint-based Causal Discovery

® Without confounders: PC

® With confounders: FCI



(T'ypical) Constraint-Based Causal
Discovery

® Conditional independence constraints between each variable
pair
® |llustration: the PC algorithm

® Extensions: the FCl algorithm...

X1l X5]| X3
Xoll X4 | X
X2l X5| X3

X4l X5 | X3
X11X5 [{Xo,
X4}

- Spirtes, Glymour, and Scheines. Causation, Prediction, and Search. 1993.



Constraint-Based Causal Discovery

® (Conditional) independence constraints =
candidate causal structures

® Relies on causal Markov condition &
faithfulness assumption

® pC algorithm (Spirtes & Glymour, 1991)

® Step 1: X and Y are adjacent iff they are
dependent conditional on every subset of the
remaining variables (SGS, 1990)

® Step 2: Orientation propagation
® \-structure

® Markov equivalence class, represented by
a pattern

® same adjacencies; - if all agree on
orientation; — if disagree

-----------------

-

--

jjn ferring

Y—X-Z

3 possibilities:

Lodnd s

- 0\‘/0



Example |

Step 1: finding skeleton

Independcies
X1 1l x2
X1 1l x4| {X3}
X2 11l X4| {X3}

Begin with:




Example |
Step 1: finding skeleton

Graph Independcies Step 2: finding v-structure
X1 1l x2 . . .
X1 and doing orientation
/X3—> X4 X1 1l X4| {X3} .
X2 x2 1l x4| {X3} propagation
X1 —
Begin with: ‘\ X3 x4
~
xs —
From X1
~N L
X1 1L X2 /X3 X4
xs —
From X1
X1 1l X4| {X3} /X3 X4
xz —
From
X1
x2 1l X4| {X3} >x3 “a




Example |
Step 1: finding skeleton

82:;1;:1111 Independcies
X1__ X1l X2 Step 2: finding v-structure
e X3— X4 X1-LL Xxa] {X3} and doing orientation
X2 X2 1l X4| {X3} propagation
X1 Pattern
Begin with: |\> x4 = T~
~ X X
<5 / « / 3 4
From X1
~ L —
X1 1l X2 /ﬁ//x“l' Xl \‘
X2 X111 X5 Xs - X4
From X /
X1 2
X1d1L x4] {X3} /X3 X4
x2 —
Xl
From T~
X1 X — X
x2 1l x4| {X3} ™~ X —
/X3 X4 2

X2



PC
Algorithm

Test for (conditional)
independence with an
increased cardinality of
the conditioning set

Finding V- @ @

structures

Orientation propagation

A.) Form the complete undirected graph C on the vertex set V.
B.)
n=0.
repeat
repeat
select an ordered pair of variables X and Y that are adjacent in C such
that Adjacencies(C,X)\{Y} has cardinality greater than or equal to
n,and a subset S of Adjacencies(C,X)\{Y} of cardinality n, and if
X and Y are d-separated given S delete edge X - Y from C and
record S in Sepset(X,Y) and Sepset(Y,X);
until all ordered pairs of adjacent variables X and Y such that
Adjacencies(C,X)\{Y} has cardinality greater than or equal to n and all
subsets S of Adjacencies(C,X)\{Y} of cardinality n have been tested for
d-separation;
n=n+1;
until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y} is
of cardinality less than n.
C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
adjacent in C but the pair X, Z are not adjacentin C,orient X - Y - Zas X > Y <- Zif
and only if Y is not in Sepset(X,Z).
D. repeat
If A > B, B and C are adjacent, A and C are not adjacent, and there is no
arrowhead at B, then orient B - C as B -> C.
If there is a directed path from A to B, and an edge between A and B, then orient
A-BasA->B.

until no more edges can be oriented.



A.) Form the complete undirected graph C on the vertex set V.
B.)

PC e
repeat

repeat

A I g O r i t h rn select an ordered pair of variables X and Y that are adjacent in C such

that Adjacencies(C,X)\{Y} has cardinality greater than or equal to
n,and a subset S of Adjacencies(C,X)\{Y} of cardinality #n, and if
Test f or ( conditional ) X and Y are d-separated given S delete edge X - Y from C and

independ
increased
the con

until for each ordered pair of adjacent vertices X, Y, Adjacencies(C,X)\{Y} is

of cardinality less than .
Flnd[ng /- ‘ ‘ C.) For each triple of vertices X, Y, Z such that the pair X, Y and the pair Y, Z are each
adjacent in C but the pair X, Z are not adjacentin C,orient X - Y - Zas X > Y <- Z if

structures
and only if Y is not in Sepset(X,Z).
D. repeat
If A -> B, B and C are adjacent, A and C are not adjacent, and there is no
) ) ) arrowhead at B, then orient B - C as B -> C.
Orientation propag ation If there is a directed path from A to B, and an edge between A and B, then orient

A-BasA->B.

until no more edges can be oriented.



(Independence) Equivalent
Classes: Patterns

® Two DAGs are (independence) equivalent if and only if they have the
same skeletons and the same v-structures (Verma & Pearl, 1991)

® patterns or CPDAG (Completed Partially Directed Acyclic Graph):
graphical representation of (conditional) independence equivalence
among models with no latent common causes (i.e., causally sufficient
models)

X7 and X> are not adjacent in any Possible Edges Example
member of the equivalent class | .. __ X
. 1 X X L] — | X,
Xi1—X> 1n some members of the . \
equivalent class, and X;«<—X> in X | — X
some others X; | —» | Xy
. X | X
Xi—X> 1 every member of the |-~ ! 2 How many DAGs
equivalent class in this class?




Example Il (From SGS Book)

Step 1 Step 11

C

N

Complete Undirected Graph




A

_’

Example Il (From SGS Book)

/'\.
\./'

True Graph

Step 1

Complete Undirected Graph

n=0  No zero order independencies

n=1  First order independencies

Resulting Adjacencies

C
Allc BB AlD B / \
AllE B c Up 1B A B \ /E
D
n=2: Second order independencies Resulting Adjacencies
C
B 1llE 1{C,D}
A B E

Step 2

Pattern

N
o,

See demo with Tetrad...



Example 2: College Plans

Sewell and Shah (1968) studied five variables from a sample of
10,318 Wisconsin high school seniors.

SEX Imale = 0, female = 1]
10 = Intelligence Quotient [lowest = 0, highest = 3]
CP = college plans [yes =0, no=1]

PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]




Result on the Archeology Data

Thanks to collaborator Marlijn Noback

® 3 variables of 250 skeletons collected from different locations
® Different dimensions (from 1 to 255) with nonlinear dependence

® By PC algorithm + kernel-based conditional independence test
(Zhang et al., 2011)

I'-:_._ f

1. gender (1D)[—2. cranial size (Hy& diet (5D)
kported

8. cranial shape

6. population history l”{ 7. climate (6D)

represented by
geodistance (3D)

differentiation
(255D)

5. level of attrition (2D)| |4. paramasticatory
behavior (5D)




Result on the Archeology Data

Thanks to collaborator Marlijn Noback

® 3 variables of 250 skeletons collected from different locations
® Different dimensions (from 1 to 255) with nonlinear dependence

® By PC algorithm + kernel-based conditional independence test
(Zhang et al., 2011)

I'-:_._ f

1. gender (1D)[—2. cranial size (1D)/l3. diet (5D)
kported

8. cranial shape

6. population history l”{ 7. climate (6D)

represented by
geodistance (3D)

differentiation
(255D)

5. level of attrition (2D)| |4. paramasticatory
behavior (5D)




Result on the Archeology Data

Thanks to collaborator Marlijn Noback

® 3 variables of 250 skeletons collected from different locations
® Different dimensions (from 1 to 255) with nonlinear dependence

® By PC algorithm + kernel-based conditional independence test
(Zhang et al., 2011)

'_';H_ f

1. gender (1D)[—2. cranial size (1D)/l3. diet (5D)|- X
\ﬁported e N

. . . 8. cranial shape
6. population history l”{ 7. climate (6D) differentiation
represented by

. (255D)
geodistance (3D)

5. level of attrition (2D)| |4. paramasticatory
behavior (5D)




PC by causal-learn

from causallearn.search.ConstraintBased.PC import pc

# default parameters
cg = pc(data)

# visualization using pydot
cg.draw_pydot graph()

# or save the graph
from causallearn.utils.GraphUtils import GraphUtils

pyd = GraphUtils.to pydot(cg.G)
pyd.write png('simple test.png')

# visualization using networkx
# cg.to nx _graph()
# cg.draw nx _graph(skel=False)



PC by causal-learn

indep_test: string, name of the independence test method. Default: ‘fisherz.

e “fisherz”: Fisher's Z conditional independence test.

e “chisq”: Chi-squared conditional independence test.

e “gsq”: G-squared conditional independence test.

e “kci”: kernel-based conditional independence test. (As a kernel method, its

complexity is cubic in the sample size, so it might be slow if the same size is not
small.)

e “‘mv_fisherz”: Missing-value Fisher’s Z conditional independence test.



Dealing with Confounders?

Example | X’\ /X2
X1 L X Possible to have confounders . €
X1 L X4 | Xs; behind X3 and X1? ¢
Xo 1 X4 | X3. .~.~’X4




Dealing with Confounders?

Example | X’\ /X2
X1 L Xo; Possible to have confounders X3
X1 A X4 | Xs; behind X3 and X4? l
Xo 1L X4 | Xs3. X4
Example Il
X X3;
Xl X3 Are there confounders
! Y behind X> and X4? X1— X2 Xge—AX3
Xo 1 Xs.

(See the FCl algorithm)



Dealing with Confounders?

Example | X’\ /X2
X1 L Xo; Possible to have confounders X3
X1 A X4 | Xs; behind X3 and X4? l
Xo 1L X4 | Xs3. X4
Example Il
X X3;
Xl X3’ Are there confounders e L\
! Y behind X> and X4? X1— X2 Xge—AX3
Xo 1 Xs.



Dealing with Confounders?

Example | X’\ /X2
X1 L Ao Possible to have confounders X3
X1 A X4 | Xs; behind X3 and X4? 1
Xo 1L X4 | Xs3. X4

E.g., X;: Raining; X3: wet ground; X4: slippery.

Example Il
X X3;
' 3? Are there confounders e L\
AL X6 behind X and Xa? Xi—Xo  Xe—X;
Xo 1 X3.

E.g., X;: I am not sick; X>: I am 1n this lecture room; X4: you

are 1n this lecture room; X3: you are not sick.
(See the FCl algorithm)




| know There Is No
Confounder: Example

In the 1970s, the Edison Electric Company in North Carolina was concerned about the
effects on plant growth of acid rain produced by emissions from its electric generators.

The investigators chose samples from the Cape Fear estuary, where the Cape Fear River
flows into the Atlantic Ocean.

obtained 45 samples of Spartina grass up and down the estuary, and measured 13
variables in the samples, including concentrations of various minerals, acidity (pH),
salinity, and the outcome variable, the biomass of each sample

The PC algorithm found that among the measured variables the only direct cause of

biomass was pH. -
\ /
PH

Y-structure: no confounder!

Later verified by intervention-based analysis 1'
Biomass



X

| Know There must Be PEN

Confounders: examples

® Xi:lam not sick; X2: 1 am in class; X4: you are in

class; X3: you are not sick

X1 — Xo X4—X3

BB Sweden B3 switzerland
B e
r=0.791
i . Denmark
e 25 =
: | Austria r
: B Norway
g
c 204
é EE:United Kingdom
=
=
=
gy 15
o
g United B Hireland r— Geimaiy
e The Netherdands = Statfs
E Lk == France
Btlgiuml I I I .

g Canada +F|n|aru:l

® Xi: European/South American country; X>: leading I S

in science; X4: Chocolate consumption; X3: meat i

supply per person

World map _ chocolate consumption

<)

Portuga
1 Ital
— u ¥

£ Spain

=

Meat supply per person, 2000 e
Average total meat supply per person measured in kilograms per year. Note that these figures do not correct for

waste at the househoeld/consumption level so may not directly reflect the quantity of foed finally consumed by a

given individual.

Okg 20kg 60 kg 100 kg 140 kg
MNodata 10 kg 40 kg 80 kg 120 kg 160 kg
] I —— ]
Source: FAQOstats QurworldinData.org/meat-and-seafood-production-consumption/ = CC BY-5A

Maote: Nata excludes fish and ather seafond solurmes



The Second Example...

X1 1 Xs;
X1 1 Xy;
Xo 1 Xsj.
- I
X1 — X> X41<—X3 L a latent variable

- There must exist some confounder for X2 and X4.

- In the presence of latent variables, the causal process over measured
variables O is not necessarily a DAG. How can we represent (independence)
equivalence classes over O ?



FCI (Fast Causal Inference)
Allows Confounders

® Assume the distribution over measured variables O is the marginal of a

distribution satisfying the Markov and faithfulness conditions for the true
graph

® Results represented by PAGs (Partial Ancestral Graphs)

N
X1 — Xo Xa4—X3

What’s FCl’s output?

Spirtes et al., Causal inference in the presence of latent variables and selection bias, 1997



Remember the Output of PC? (Independence)

Equivalent Classes: Patterns

® Two DAGs are (independence) equivalent if and only if they have the
same skeletons and the same v-structures (Verma & Pearl, 1991)

® patterns or CPDAG (Completed Partially Directed Acyclic Graph):

graphical representation of (conditional) independence equivalence
among models with no latent common causes (i.e., causally sufficient

models)

X1 and X> are not adjacent 1n any
member of the equivalent class

X1—X> 1n some members of the
equivalent class, and X;<—X> in
some others

Xi—X>2 1n every member of the
equivalent class

Possible Edges

-
~na
=y

-
-~
=
L

Example

X1 _X2

N\

X, | —»| X,

How many DAGs
in this class?




PAGs: What Edges Mean?

X, X, | Xjand X, are not adjacent

X |0o—p | X, X, 18 not an ancestor of X;

X5 No set d-separates X, and X

X; 1s a cause of X,

x
I
%

X5 There 1s a latent common
cause of X; and X,




FCl by causal-learn

from causallearn.search.ConstraintBased.FCI import fci

# default parameters
G, edges = fci(data)

# visualization
from causallearn.utils.GraphUtils import GraphUtils

pdy = GraphUtils.to pydot(G)
pdy.write png('simple_ test.png')



Summary: Constrain-based approach and
extensions

® Conditional independence relations help in causal
discovery

® What assumptions are needed
® Constraint-based approach

® Confounders?



Score-based Causal Discovery

® Possibility
® GES



Constramt-Based vs. Score-Based

® Score-based methods

X — X, —— 35— X4 score 1 Which

-

X| ——Xo —X3 — X4 score 2 O?Ifels
X1 X3 best?
N q score 3 '

X2 .

1 ad :

Xy (Score may be BIC, AlC, etc.)



Why Is It Possible?

“True” structure

&>
N
<P
Addn a Missing an arc
£ &
N1 7
& S

- Increases the number of

parameters to be fitted; - Cannot be compensated by
accurate fitting of parameters;

Wrong assumptions about
causality and domain Also misses causality and

structure domain structure



Key Issues

® \What score to use?
® How to traverse the search space of the graph?
® DAGs? Equivalence classes?

® How to do optimization?



X7 X3

N

Searching for Network Structure )i

X4

® Sad news: Given a complete dataset and no hidden variables, locating the
Bayesian network structure that has the highest posterior probability 1s NP-
hard (Chickering, 1996; Chickering, et al, JIMLR, 2004).

Greedy search often used

® Some algorithms guarantee locating the generating model in the large
sample limit (assuming Markov, Faithfulness, and some other conditions);

e.g., the GES algorithm (Chickering, JMLR, 2002)

® The ability to approximate the generating network is often quite good

Chickering, Learning Bayesian networks is NP-complete, Learning from Data, 1996



GES (Greedy Equivalence Search):
Score Function

® Assumptions: The score is
® score equivalent (i.e., assigning the same score to equivalent DAGs)

® |ocally consistent: score of a DAG increases (decreases) when adding
any edge that eliminates a false (true) independence constraint

Score(G,D) = Z Score(X;, Paf)

i—1
A d
® Fg., BIC: Sp(G,D) = logp(D|6,G") — 5 log m

® decomposable:

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research,
2002



GES: Search Procedure

® Pperforms forward (addition) / backward (deletion) equivalence search
through the space of DAG equivalence classes

® Forward Greedy Search (FGS)

Start from some (sparse) pattern (usually the empty graph)

Evaluate all possible patterns with one more adjacency that entail strictly
fewer Cl statements than the current pattern

Move to the one that increases the score most

lterate until a local maximum

® Backward Greedy Search (BGS)

Start from the output of Stage (1)

Evaluate all possible patterns with one fewer adjacency that entail strictly
more C| statements than the current pattern

Move to the one that increases the score most

lterate until a local maximum



B
Suppose data were generated by 0

(1) 0 2) 0

o




GES

Suppose data were generated by

Imagine the GES procedure...



GES by causal-learn

from causallearn.search.ScoreBased.GES import ges

# default parameters
Record = ges(X)

# Visualization using pydot

from causallearn.utils.GraphUtils import GraphUtils
import matplotlib.image as mpimg

import matplotlib.pyplot as plt

import io

pyd = GraphUtils.to pydot(Record['G'])
tmp_png = pyd.create_png(f="png")

fp = i0.BytesIO(tmp_png)

img = mpimg.imread(fp, format='png")
plt.axis('off")

plt.imshow(img)

plt.show()

# or save the graph
pyd.write png('simple test.png')



Practical Issues

® Missing data

® Nonstationary/heterogenous data



Issue 1: Causal Discovery 1n the
Presence of Missing Data

X1 X2 X3 X4 X5 X6
-9.4653403e-01 6.6703495e-01 8.2886922e-01 -1.3695521e+00 -3.2675465e-02 1.8634806e-01

-9.4895568e-01 -4.6381657e-01 -1.8280031e+00
5.1435422e-01 6.7338326e-01 4,.340355%e-01 9.4535076e-01 7.5164028e-01
7.2489037e-01 5.1325341e-01 B8.3567780e-01 2.9825903e-01 7.7796018e-02
-1.3440612e+080 -7.3325009e-01

1.3261794e+00 -6.1971037e-81 -1.0498756e-01 1.4171149%e+00 1.6251026e+00 3.7478050e-01
-2.1128404e+00 1.3359744e-02 -2.0209600e+00 -1.7172659e+00 -2.4746799e+00 -2.8026586e+00
1.5453163e+00 -5.3986972e-01 4.5157367e-01 1.5566262e+00 9.3882105e-01 -4.3382982e-01
6.5974086e-02 5.5826895e-01 6.5247930e-01 -5.7895322e-01 5.0062743e-01 1.0183537e+00
8.9772858e-01 2.6752870e-01 -4.9204975e-01 7.7933358e-02 8.3467624e-01 9.2744311e-01

T 124001 TA LM 2 RE104079%~ M1 E ENRTEENA AN A OIVDEEND~A M1 N 27TA7TAAA~A 1 ? VTEINDIIA D

(a) An MCAR graph (b) An MAR graph (c) An MNAR graph

® Conditional independence relations in the data are sensitive to the
missingness mechanism

® Keyissue: Recover conditional independence relations in the original
population from incomplete data

R. Tu, C. Zhang, P. Ackermann, K. Mohan, H. Kjellstrom, C. Glymour, K. Zhang, “Causal discovery in
the presence of missing data,” AISTATS 2019



Causal Discovery 1n the Presence of

X1

—g-
_g-
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O

Missing Data

X2 X3 X4
4653403e-01
4895568e-01

2489037e-01

.3261794e+00
.1128404e+00
.5453163e+00
.5974086e-02
.9772858e-01

124001 TA M

@ ®

(a) An MCAR graph

missingness

® If Rxis 1, the corresponding value of X is missing; if it is 0, it is

observed

® Missingness graph

X5

6.

X6
6703495e-01

. 1435422e-01

«1971037e-01
.3359744e-02
.3986972e-01
.5826895e-01
.6752870e-01

E10A0T79A~ M1

. 2886922e-01

. 7338326e-01
.1325341e-01
.3440612e+080
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.9204975e-01
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(b) An MAR graph
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.2675465e-02
.8280031e+00
.4535076e-01
.9825903e-01

.6251026e+00
.4746799e+00
.3882105e-01
.0062743e-01
.3467624e-01

DTATAAAA AN

(c) An MNAR graph
® R is the set of missingness indicators that represent the status of

.8634806e-01

.5164028e-01
. 7796018e-02
.3325009e-01
. 7478050e-01
.8026586e+00
.3382982e-01
.9183537e+00
«.2744311e-01
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ate gorles ol Missing Data vechanism
(d) SL“ masking
(a) A MCAR graph (b) A MAR graph (¢) A MNAR graph missineness
Figure 1: Exemplar missingness graphs in MCAR, MAR, MNAR, and self-masking missingness.
X.Y.Z and W are random variables. In missingness graphs, gray nodes are partially observed vari-
ables, and white nodes are fully observed variables. R,, R,, and R,, are the missingness indicators
of X, Y,and W,

® All missing data mechanisms fall into one of the following three
categories (Rubin, 1976):

® Data are Missing Completely At Random (MCAR) if the cause of
missingness 1s purely random.

® Data are Missing At Random (MAR) when the direct cause of
missingness 1s fully observed.

® Data that are neither MAR nor MCAR fall under the Missing Not
At Random (MNAR) category.



Assumptions for the Method

Assumption 1 (Missingness indicators are not causes): No
missingness indicator can be a cause of any substantive
(observed) variable.

Assumption 2 (Faithful observability): Any conditional
independence relation in the observed data also holds 1n the
unobserved data.

Assumption 3 (No deterministic relation between missingness
indicators): No missingness indicator can be a deterministic
function of any other missingness indicators.

Assumption 4 (No self-masking missingness): Self-masking
missingness refers to missingness in a variable that is caused by
itself.



Missing-Value PC (MVPC)
ooy
-®)
Add missingness variables R to the dataset with measured variables V
Create knowledge that R variables do not cause V variables

Run PC adjacency search over VUR

Identify adjacencies over V 1n triangles over VUR-—these might be
false positives!

Try to remove these extra adjacencies using correction...

Finally, do collider orientation and apply the Meek rules to graph G
over V



MVPC by causal-learn

# default parameters
cg = pc(data)

# or customized parameters

cg = pc(data, alpha, indep test, stable, uc_rule, uc_priority, mvpc,

mvpc: use missing-value PC or not. Default: False.

indep_test: string, name of the independence test method. Default: ‘fisherz..

e “fisherz”: Fisher's Z conditional independence test.

“chisg”: Chi-squared conditional independence test.
e “gsq”: G-squared conditional independence test.

“kci”: kernel-based conditional independence test. (As a kernel method, its complexity is
cubic in the sample size, so it might be slow if the same size is not small.)
¢ “mv_fisherz”: Missing-value Fisher’s Z conditional independence test.



Issue 2: Nonstationary/Heterogeneous Data
and Causality

® Ubiquity of nonstationary/heterogeneous data

® Nonstationary time series (brain signals,
climate data...)

® Multiple data sets under different
observational or experimental conditions

® Causal modeling & distribution shift heavily
coupled

® p(cause) and P(effect | cause) change
independently

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schélkopf, "Causal Discovery from
Heterogeneous/Nonstationary Data," JMLR, 2020

Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018



Issue 2: Nonstationary/Heterogeneous Data
and Causality

® Ubiquity of nonstationary/heterogeneous data

® Nonstationary time series (brain signals,
climate data...)

® Multiple data sets under different
observational or experimental conditions

® Causal modeling & distribution shift heavily
couple

® P(cz
indé

Huang, Zhang, Zhang, Ramsey, Sanchez-Komero, ausal Discovery from

Heterogeneous/Nonstationary Data," JMLR, 2020
Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018

ymour, ScCholkopf,



Causal Discovery from
Nonstationary/Heterogeneous Data

9(C)

)3

® Questions to answer:

® Method to determine changing causal
modules & estimate skeleton

® Causal orientation determination benefits
from independent changes in P(cause) and
P(effect | cause)

® How do the nonstationary modules change Kernel nonstationary
over time / across data sets? driving force estimation



Discovery & Visualization of
Changing Causal Modules

* Questions to answer for causa) discovery:
. With our proposed approach:

® |dentify variables 5 . .
with cr:/anging * Incorporate time/domain
causal modules & \T@ \Y@ @ \T‘ index C as a surrogate +

. apply constraint-based

recover causal .
causal discovery methods

skeleton?

* Independent changes in
P(cause) and P(effect |
cause)

® |dentify causal .
directions by using
distribution shifts? :

® Visualize the  Kernel nonstationarit
: 5 Y e Find a mapping of P(V;
changein causal  iyjsyalization (KNV) PPINZ (V;

modules? g |[PA") to capture its

Los variability



Causal Analysis of Major Stocks in Hong
Kong Market (10/09/2006 - 08/09/2010)

HSF 5

1. Cheng Kong Holdings,

2. Wharf (Holdings),

3. HSBC,

4.Hong Kong Electric Holdings,
5. Hang Seng Bank,

6. Henderson Land Dev.,

7. Sun Hung Kai Properties,

8. Swire Group,

9. Cathay Pacific Airways

10. Bank of China Hong Kong

- HSF and HSP usually have
nonstationary confounders




(https://research.stlouisfed.org/fred2/series/TEDRATE)

Nonstationarity ,/k
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Nonstationarity visualization
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- Finance Properties

Commerce & Industry

1. Cheng Kong Holdings,

2. Wharf (Holdings),

3. HSBC,

4.Hong Kong Electric Holdings,

5. Hang Seng Bank, ~ | '
. Henderson Land Dev., '_._:__....___:./'—"""\_:___._'
g. ?un Hung Klz;i Pro[;erties, _g I L1 propertles 1
8- Swhre Group, 10/09/2006 T1 T2 T3 08/09/2010

9. Cathay Pacific Airways
10. Bank of China Hong Kong 107


https://research.stlouisfed.org/fred2/series/TEDRATE

1. Cheng Kong Holdings,
. . 2. Wharf (Holdings),
Nonstationarity sussc

« . 4.Hong Kong Electric Holdings,
Derlng FOFCE 5. Hang Seng Bank,
6. Henderson Land Dev,,
7. Sun Hung Kai Properties,
8. Swire Group,
9. Cathay Pacific Airways
10. Bank of China Hong Kong

(Curve of TED spread;
https://research.stlouisfed.org/fred2/series/TEDRATE)
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https://research.stlouisfed.org/fred2/series/TEDRATE

Causal Analysis of Major Stocks in NYSE
(07/05/2006 - 12/16/2009)
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CD-NOD by causal-learn

from causallearn.search.ConstraintBased.CDNOD import cdnod

# default parameters
cg = cdnod(data)

# or customized parameters
cg = cdnod(data, c_indx, alpha, indep_test, stable, uc_rule, uc_priority, mvcdnod,
correction_name, background_knowledge, verbose, show_progress)

# visualization using pydot
# note that the Last node is the c_indx
cg.draw_pydot_graph()

# or save the graph
from causallearn.utils.GraphUtils import GraphUtils

pyd = GraphUtils.to_pydot(cg.G)
pyd.write png('simple_test.png')



From MECs to DAGs (1)

® Distinguishing cause from effect

® Linear, non-Gaussian, acyclic models
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A Causal Process
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Functional Causal Models

® Effect generated from cause with independent noise (Pearl et al.):

Y= (X, E)
® A way to encode the intuition “the generating process for X is ‘independent’
from that generates Y from X” P(Y|X) 9
P(X) >X-> Y

® -_( Without constraints on f, one can find independent noise for both
directions (Darmois, 1951; Zhang et al., 2015)

® Given any X1 and X2, £ := conditional CDF of X> | X7 is always independent from
Xrand X2 = f(X), E)

® ) Structural constraints on fimply asymmetry



Functional Causal Model

® A functional causal model represents effect as a function of
direct causes and noise: Y =f (X, E), with X1LE 35

106) . ;:,‘-:".": :‘: :}};, o,
V=9 -X+E .5;.'\*-

® Additive noise model (Hoyer et al., ’09; Zhang & et e
Hyvarinen, ‘09b) T

Y=AX)+E Pl

if o* g3e* ‘..

. ‘:.. :.-:.-.. '. .ﬁl;’

® post-nonlinear causal model (Zhang & Chan, '06; Zhang & .- ;¥ "
-:l -.. h ‘r..-.”

Hyvarinen, ‘09a) ...1_;;" ot
R ; e

Y=f2 (filX)+E) &



(Conditional) Independence

* X4Yiff p(X)Y) = p(X)p(Y)
* or p(X|Y) = P(X): Y not informative to X
* XUY | Z it p(X,Y|Z) = p(X|2)p(Y|Z)

*or, p(X|Y,Z) = p(X|Z): given Z, ¥ not

informative to X
®* Divide & conquer, remove 1rrelevant info... %

® By construction, regression residual 1s %

uncorrelated (but not necessarily
imndependent !) from the predictor

Uncorrelatedness: E[XY] = E[X]E[Y]




Three distribusions with zero mean and unit variance

Gaussian vs. Non-Gaussian
Distributions
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Causal Asymmetry the Linear Case:

lllustration
Data generated by Y = aX + E (1.e., X —Y):

Linear regression X = bY + Ex

Linear regression Y = aX + EY
Y

Uniform case




Super-Gaussian Case

Data generated by Y = aX + E (X —Y):

Ey

Ex -




More Generally, LINGAM Model

® |inear, non-Gaussian, acyclic causal model (LINGAM)
(Shimizu et al., 2006):

j: parents of 7

® Disturbances (errors) E; are non-Gaussian (or at most one
is Gaussian) and mutually independent

® Example:
Xy = E>,
X3 = 0.5X9 + E3, EZ

X1 =—-02X9+0.3X3+ E.

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine
Learning Research, 7:2003-2030.



Independent Component Analysis

— — — —
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i ) /M mixing \/\y de-mixing W
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sources signals independent as
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Unknown mixing system
X=A-S Y =W-X

5 3 11 -03 .. Wl [207 7 7 ] s
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® Assumptions in ICA
P Then A can be estimated up to

® At most one of S;is Gaussian column scale and permutation
indeterminacies

® #Source <= # Sensor, and A is of full column rank

Hyvdrinen et al., Independent Component Analysis, 2001



Intuition: Why ICA works?

® (After preprocessing) ICA aims to find a X24

rotation transformation Y = W-X to making Y
independent

|
s1 & s2 boih Gaussian

® By maximum likelihood log p(X/A), mutual
information MI(Y,..., Y») minimization,
infomax...




A DemO Of SIGNALS JOINT DENSITY

the ICA om0
Procedure QWWWMW
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LINGAM Analysis by ICA

LINGAM: X, = Z bi;X; +E; or X=BX+E= E=(I-B)X
j: parents of ¢

® B has special structure: acyclic relations
ICA: Y = WX

B can be seen from W by permutation and
re-scaling

Faithfulness assumption avoided

E.e., r1p.- - 1 [x,
8 51 1 0. 0 X So we have the causal
Bs| = |-058 FRLE O] - | X3 relation:
_Ez_ i 0.2 —3 ]._ _Xl_ .
Xo = F4

&< X3 =05X9+ E3
X1 — —02X2 -+ 03X3 -+ EQ




LINGAM Analysis by ICA

j: parents of ¢

® B has special structure: acyclic relations

ICA: Y = WX

Question 1. How to find W?

B can be seenfromW Db
re-scaling

Question 2. How to see B from W?
Faithfulness assumption avoraec

8 En 1 0. 0 X So we have the causal
by | = -0 O - |43 relation:
Ey| | 0.2 1| | X1 '

X9 = Ej
&< X3 =05X9+ E3
X1 — —02X2 -+ 03X3 -+ EQ




LINGAM Analysis by ICA

j: parents of ¢

® B has special structure: acyclic relations

® |ICA:Y=WX

4
I

® B can be seen from W by permutation ard
re-scaling

® Faithfulness assumption avoided

¢ Eg’ _El- i 1 0 0- _XQ-
_Eg_ i 0.2 —3 ]._ _Xl_
X2 = El

&< X3 =05X9+ E3
X1 — —02X2 -+ 03X3 -+ EQ

X =BX + E= E=(I-B)X

1. First permute the rows of W

to make all dlagonal entries
non-zero, yielding W.

2. Then divide each row of W
by 1its diagonal entry, giving W’.
3.3 B=1-W'.

So we have the causal
relation:




Can You See Causal Relations
from W? Example

® |CA gives Y = WX and
. First permute the rows of W

06 —04 2 0] to make all dlagonal entries
1.5 0 0 0O non-zero, yielding W.
W = 0 02 0 05 2. Then divide each row of W
1.5 3 0 0 by its diagonal entry, giving W'.
- - 3. B=1-W'.

® Can we find the causal model?



Can You See Causal Relations
from W? Example

® |CA gives Y = WX and
. First permute the rows of W

06 —04 2 0] to make all dlagonal entries
1.5 0 0 0O non-zero, yielding W.
W = 0 02 0 05 2. Then divide each row of W
1.5 3 0 O by its diagonal entry, giving W'.
- - 3.B=1-W'.
® Can we find the causal model?
Joy e §g) of pete D
=11y 45 % , " = py e 0
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Can You See Causal Relations
from W? Example

® |CA gives Y = WX and
. First permute the rows of W

06 —04 2 0] to make all dlagonal entries
1.5 0 0 0O non-zero, yielding W.
W = 0 02 0 05 2. Then divide each row of W
1.5 3 0 O by its diagonal entry, giving W'.
- - 3.B=1-W'.
® Can we find the causal model?
l'-.F E ¢ 0 ) i + ; g 2 Vv D
Ly s A S S Y A | e e g=[~S000
" ok ot 2 © ) ; o 0.2 02 | o , 2.0 &2 00
& c 0% ¢ 1 0 =0t 00



Can You See Causal Relations
from W? Example

® |CA gives Y = WX and
. First permute the rows of W

0.6 —04 2 to make all dlagonal entries
1.5 0 0 non-zero, yielding W.

0"
0 o0

W= ® Then divide each row of W
P *%  its diagonal ent W

1.5 3 M7 ;-—:- Xq. s diagonal entry, giving W

® Can we find the cat

I 40 ¢ 0 v T G - : #F 00
Ly kS S5 L) U AR S | T e s e e o
Al = 159 TR - B -
’ ,'_11-.1'! -0 .2 ¢ # 2 "...?-’ =02 [ D » -:.-.5 . 2 00O
) g e :‘-E e -:-.'I'T‘ v _I_ 0 'rﬂ'q g



Faithfulness Assumption Needed?

® One might find independence between health condition & risk of

mortality. Why?
o v
7

health
condition
healthy Possible to have
lifestyle YLZ|X?

® E.g., if a=-bc, then health _condition 1L mortality risk, which
cannot by seen from the graph!

® No faithfulness assumption is needed in LINGAM

® Minimality (a zero coefficient corresponds to edge absence) is
sufficient



Some Estimation Methods for
LINGAM

® |CA-LINGAM
® |CA with Sparse Connections

® DirectLiINGAM...

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine
Learning Research, 7:2003-2030.
Zhang et al. (2006) ICA with sparse connections: Revisited. Lecture Notes in Computer Science,
5441:195-202, 2009
Shimizu, et al. (2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural
equation model. Journal of Machine Learning Research, 12:1225-1248.



Application: Causal diagram in HK Stock
Market (zhang & Chan, 2006)

0.3 . .
~ 1. Ownership relation: x5

= R

Stocks belonging to the

same subindex tend to
be connected.

/ 0.047 - 9 3. Large bank companies
(x5 and x8) are the

cause of many stocks.

x2
x1: ChelingKere10001.hk)
x2: CLP Hidgs (0002.hk)
x3: HK & China Gas (0003 hk) D.28
x4 Wharf (Hidgs) (0004 hk)
xo: HSBC Hidg (0005.hk),
x6: HK Electnic (0006 hk) %14
x7: Hang Lung Dev (0010.hk)
x8: Hang Seng Bank (0011.hk)
¥9: Henderson Land (0012 hk)
x10: Hutchison (0013.hk)
x11: Sun Hung Kai Prop (0016.hk)
x12: Swire Pacific 'A" (0019.hk)
x13: Bank of East Asia (0023.hk)
x14: Cathay Pacific Air (0293 hk)

4. Stocks i Property
Index (x1, x9, x11)
depend on many
stocks, while they

hardly influence others.




LINGAM-based methods by causal-learn

® |CA-based LINGAM: Linear Non-Gaussian
® DirectLINGAM: Linear Non-Gaussian

® VAR-LINGAM:Time series

® RCD: Hidden confounders

® CAM-UV: Nonlinear additive noise



LINGAM-based methods by causal-learn

from causallearn.search.FCMBased import lingam
model = lingam.ICALiNGAM(random state, max_iter)
model.fit(X)

print(model.causal order )
print(model.adjacency matrix )



® \We have seen the linear non-Gaussian case.

® How about nonlinearity?



From MECs to DAGs (2)

® Additive Noise Model
® Post Non-Linear Model
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Functional Causal Models

® Effect generated from cause with independent noise (Pearl et al.):

Y= (X, E)
® A way to encode the intuition “the generating process for X is ‘independent’
from that generates Y from X” P(Y|X) 9
P(X) >X-> Y

® -_( Without constraints on f, one can find independent noise for both
directions (Darmois, 1951; Zhang et al., 2015)

® Given any X1 and X2, £ := conditional CDF of X> | X7 is always independent from
Xrand X2 = f(X), E)

® ) Structural constraints on fimply asymmetry



Causal Asymmetry with Nonlinear
Additive Noise: lllustration

Y = AAX) +E with EILX

e ,:.*:s .' 0....
oo. . ~. .‘

(Hoyer et al., 2009)



Additive Noise Models by causal-learn

from causallearn.search.FCMBased.ANM.ANM import ANM
anm = ANM()

p_value_foward, p_value backward = anm.cause_or_effect(data_x, data_y)

Parameters
data_x: input data (n, 1).

data_y: output data (n, 1).

Returns
pval_forward: p value in the x->y direction.

pval_backward: p value in the y->x direction.



Three effects usually encountered in a causal
model (Zhang & Chan, 2006; Zhang & Hyvarinen, ‘09a)

® \Without prior knowledge, the assumed model is expected to be
® seneral enough: adapt to approximate the true generating process

® identifiable: asymmetry in causes and effects

(" Noise effect )

Noise { |
Causes — f, rfi—} "o — Effect
—_— 1
= \

Nonlinear effect Sensor or measurement
of the causes distortion
® Represented by post-nonlinear causal model with inner additive
noise




PNL Causal Model

l pa;: parents (causes) of x, ‘

e
_____———:L:___:—_-:I_¥1:_E_F i) 2,(%} ] (pal) o E_i_k-_%_"‘-——___——— —
I . L [ . : __h-_h"'“-._,h
f; o assumed. to be. f:;f: not necessarily [,f\f"’ .ei: noise/disturbance: \
continuous and mvertible | e ~_Independent from pa, -~

linear or nonlinear?
1000 3000 S000

® Special cases: Ly

® |inear models

® Nonlinear additive noise models

Sales price

® Multiplicative noise models:

Y =X - E =exp (log(X) + log(E))

Finished square feet
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ldentifiability in Two-variable Case:
Theoretical Results

l pa;: parents (causes) of x, ‘

e

X folfupa) By

- . o - P o :
L f; o assumed to be fz ;- ot necessarily ) e noise/disturbance:

| )
continuous and mvertible | e ~~__independent from pa, -~

—

--"'\-\.__

-,
N
1]

® Two-variable case: if X;—X>, then X> = f22( /2,1 (X)) + E2)
® |s the causal direction implied by the model unique?

® By a proof of contradiction

® Assume both X;— X, and X>— X satisfy PNL model

® One can then find all non-identifiable cases



ldentifiability: A Mathematical Result

Notation
Theorem 1 t1 £ g5t (z1), 22 2 £ Haw),
h = f1ogs, hi = g1 0 f.
Assume  zy = fo(fi(z1) + ea) m(t1) = logp, (t1), mn2(e2) = logpe,(e2).

1 = ga(g1(z2) + €1).

Further suppose that involved densities and nonlinear functions are third-
order differentiable, and that p_. 1s unbounded,

For every pomt satisfying z7," B # 0, we have

I " h”ﬂ

" I |
— nrt (”2”2 — 2?35) Wt =12 hni + ny - (hm — ?)

h' 17y 7y

Obtained by using the fact that the Hessian of the logarithm of the joint
density of independent variables 1s diagonal everywhere (Lin, 1998)

It 15 not obvious 1f this theorem holds 1n practice. ..



List of All Non-ldentifiable Cases

(log p,)' > c(c# 0),

Log-mixed-linear-and-
exponential:

log p,, c1e?Y 4 cqv + oy

A8V —>»—oDOr a8 vV —» +ob

\Tﬂhle 1: All situations in which

)
oy
LS,

=

the PNL causal model 1s not identifiable.

Deg \ pe, (t1 = g.;_l{_n]} h=fiog Remark
| Gaussian Gaussian linear hy also linear
11 l{}g'-mi}:-lin-c-}) log-mix-lin-exp linear hi strictly monotonic, and h} —
0, as z0 — 400 or as 22 — —oX
Il || log-mix-lin-exp one-sided asymptoti-y|| i strictly monotonic,
cally exponential (but || and k" — 0, as t; —
not log-mix-lin-exp) +o0 or as ty — —ox
IV || log-mix-lin-exp generalized mixture of || Same as above —
two exponentials
V generalized mixture | two-sided asymptoti- || Same as above —
of two exponentials | cally exponential x
- \
_ . L C2T . A CAT N CE
‘ Zn e lEee e (log p,) —>¢ (¢, #0), |a
S

as v — —o and

(logp,)—>c,(c, 20),
a8 vV —» +ob




List of All Non-ldentifiable Cases

=

logp,)y>c(c=0), |g

Log-mixed-linear-and- 48V —>—o0 Or a8 V —> 40
exponential:

log p, = 1€ + cav + ¢y
\Tt]}lt 1: All situatj

era\\v not identifiable.

Remark

Pez

hi also linear

| (saussian
11 log-mix-lin-ex

hi strictly monotonic, and h} —
), as 220 — +00 Or as o

— —0OX

Il || log-mix-lin-exp

IV || log-mix-lin-exp

V generalized mixture
of two exponentials

S




Post-nonlinear Models by causal-learn

from causallearn.search.FCMBased.PNL.PNL import PNL
pnl = PNL()
p value foward, p value backward = pnl.cause or_ effect(data x, data y)

Parameters

data_x: input data (n, 1), n is the sample size.

data_y: output data (n, 1), n is the sample size.

Returns

pval_forward: p value in the x->y direction.

pval_backward: p value in the y->x direction.



Take-Home Message: Causal Discovery
with Nonlinear Functional Causal Models

® Functional causal models naturally describe the causal
processes

® Can we use them to distinguish cause from effect?

® Certain types of constraints on f are needed to guarantee the
identifiability of the causal direction

® Nonlinearities are encountered frequently and should be
considered

® Trade-off of generality & identifiability

® Limitation: more than one noise term? large-scale problems?



More Practical Issues

® Nonlinear Relations
® Measurement Error
® Selection Bias

® Missing data

® Nonstationarity



Practical Issues in Causal Discovery...

® Nonlinearities (Zhang & Chan, ICONIP’06: Hoyer et al., NI
UAI'09; Huang et al., KDD’18)

® (Categorical variables or mixed cases (Huang et al., KDD'1

® Measurement error (Zhang et al., UAI'18; PSA’18)

Sci — True
meas - . ihg Va/Ue 4 Missing
€n rro ' S-¢— Observed
r

data uncertainty




Practical Issues in Causal Discovery...

Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS’08; Zhang & Hyvarinen,
UAI'09; Huang et al., KDD’18)

Categorical variables or mixed cases (Huang et al., KDD'18; Cai et al., NIPS'18)
Measurement error (Zhang et al., UAI'1E; PSAT18)
Selection bias (Zhang et al., UAI'16)




Practical Issues in Causal Discovery...

Nonlinearities ( Hoyer et al., NIPS’0S;
)
Categorical variables or mixed cases ( )
Measurement error ( )
Selection bias ( )
Confounding sGs 1993; : ); latent causal

representation Iearning (Silva et al., JMLR’06; Xie et al., NeurlPS’20; Cai et al., NeurIlPS’19; Adams et al.,
NeurlPS’21)

aj az

X1— X2 X3
BT an

i .. % o EE




Practical Issues in Causal Discovery...

Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS’08; 7hang & Hyvarinen,
UAI'09; Huang et al., KDD’18)

Categorical variables or mixed cases (Huang et al.,, KDD'18; Cai et al., NIPS'18)
Measurement error (Zhang et al., UAI"18; PSAT18)
Selection bias (Zhang et al., UAI"16)

Confounding (SGS 1993; Zhang et al., 2018¢; Cai et al., NIPS'19; Ding et al,, NIPS’19); latent causal

representation learning (Silva et al., IMLR'06; Xie et al., NeurIPS'20; Cai et al., NeurIPS'19; Adams et al.,
NeurlPS’21)

Missing values (Tu et al., AISTATS'19)

X1 X2 X3 X4 X5 X6

.4653403e-01 6.6703495e-01 . 2886922e-01 .3695521e+00 . 2675465e-02 .8634806e-01

.4895568e-01
. 2489037e-01

.3261794e+00
.1128404e+00
.5453163e+00
.5974086e-02
.9772858e-01

.1435422e-01

.1971037e-01
«3359744e-02
.3986972e-01
.5826895e-01
.6752870e-01

.7338326e-01
.1325341e-01
.3440612e+00
.0498756e-01
.0209600e+00
«5157367e-01
«5247930e-01
.9204975e-01

.6381657e-01
.340355%e-01
.3567780e-01

«417114%e+00
. 7172659%e+00
.5566262e+00
. 7895322e-01
. 7933358e-02

.8280031e+00
.4535076e-01
.9825903e-01

.6251026e+00
«4746799%e+00
.3882105e-01
0062743e-01
«3467624e-01

.5164028e-01
. 7796018e-02
.3325009e-01
. 7478050e-01
.8026586e+00
.3382982e-01
.0183537e+00

.2744311e-01




Practical Issues in Causal Discovery...

Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS’08; Zhang & Hyvarinen,
UAI'09; Huang et al., KDD’18)

Categorical variables or mixed cases (Huang et
Measurement error (Zhang et al., UAI'1E; PSA
Selection bias (Zhang et al., UAI'16)

Confounding (SGS 1993; 7hang et al.,, 2018¢; Cai et al., NI

representation learning (silva et al., IMLR'06; Xie et
NeurlPS’21)

Missing values (Tu et al., AISTATS 19)
Causality in time series

® Time-delayed + instantaneous relations (Hy
ECML’09; Hyvarinen et al., IMLR’10)

® Subsampling / temporally aggregation (Dan
ICML’15 & UAI'17)

® From partially observable time series (Geig




Practical Issues in Causal Discovery...

Nonlinearities { Hovyer et al., NIPS’08;
)
Categorical variables or mixed cases ( )
Measurement error ( )
Selection bias (Spirtes 1995; )
Confounding (SGS 1993; ; ); latent causal

representation learning

Missing values )

Causality in time series

nonstationarity

® Time-delayed + instantaneous relations (Hyvarinen ICML'08;
)

® Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14

® From partially observable time series ( ) iy bt

Nonstationary/heterogeneous data (



Summary: Practical Issues in Causal
Discovery

® Latent confounders, cycles, nonlinearities (and even mixed
data types), measurement error, selection bias, missing
values, nonstationarity...

® Don’t worry—look into the problems



Causal Representation Learning:

Recovery of the Hidden World

® Why causal/disentangled representations ?
® How?
® 11D case
® Linear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® From multiple distributions

® With temporal information



HEHHHT

~ ‘causal-learn

Uncover Causality from
Observational Data?

® Causal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993)

i

Y pafform:

HEC )

IR

- - ¥ :_..'
TR

- conditional independence among variables;
Y - independent noise condition;
slippery - minimal (and independent) changes...

wet ground

Footprint of causality in data

® Causal discovery (Spirtes et al., 1998)/ causal representation learning (Schélkopf
et al., 2021): find such representations with 1dentihiability guarantees

® Three dimensions of the problem:

i d. data? Parametric Latent
B " constraints? confounders?
Yes No No

| No Yes Yes




Causal Representation Learning: A Summary

i.i.d. data? Paramc_atrlc Latent What can we get?
constraints? confounders?
No
NG (Different types of)
equivalence class
Yes
Yes
No Unique identifiability
Yes (under structural
Yes conditions)
No (Extended) regression
Non-I, but [.D. No/Yes
Latent temporal causal
Yes . .
processes identifiable!
NG More informative than
\ MEC (CD-NOD)
o)
May have unique
ves identifiability
|., but non-1.D. ,
NG Changing subspace
identifiable
Yes _ . .
Yes Variables in changing
relations identifiable




Underlying

Ing

Find

Mental Conditions?

A Problem 1 Psychology

® 50 questions for big 5 personality test

race age engnat gender hand source country E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N1 N2 N3 N4 N5 N6 N7 N8 N9 N1i0 A1 A2 A3 A4 At

L

us
us

53

1

PK
RO
usS
us
us

14

L)

19
25

L

31

20

L

IN

23

US
usS
IT

39

L]

18

17

CT)

IN

15

us
UsS
usS
us
FR
us
GB

22

W

21

L]

28

21

19

Ly

21

N

5

26
26

L)

US

13| 46

11

13

13

13

13



Learning Hidden Variables & Their Relations

| i d. data? Parametric Latent
T ] constraints? confounders?
Yes No No
| No Yes Yes

® Measured variables (e.g., answer scores in psychometric questionnaires)

were generated by causally related latent variables

Latent vanables &
their causal structure

X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8
42 |36 | 65 | 6.8 |96 | 76| 27|48

38 (19| 65|73 |89|69]11]46 Ly /—\
4.2 | 34 | 65 |1 69 |95 | 74 | 25| 4.6 :

iscovery: Ho
4.2 | 2.2 6.2 6.9 | 9.6 | 7.2 | 1.9 | 4.8
3.9 | 1.9 6.5 6.8 | 9.0 |1 6.8 | 1.7 | 4.4
40 (20| 64 | 72 |91 ] 70| 1.0 | 4.6

3. |1.7 1 64 | 73 |90 ]|67)]08]43
41 | 28 | 65 | 69 |93 |67 | 27|46

.

® Tind latent variables L; and their causal relations ?

EICHELE

® Rank deficiency or GIN helps solve the problem



Outline

® Why causal/disentangled representations ?
® How?
® 11D case
® Linear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® From multiple distributions

® With temporal information



Linear, Gaussian Case: With Rank

Deticiency Constrains
Basic idea:

® Rank-deficiency constraints over measured variables

- d
+ Specific search procedure found qtion of this metho

» rank(Zx, x,), which is deficient, indicates the smallest number
of variables that d-separate X, from Xj

X4 = = EXP
o I N |
X6 . ol Let Xa = {Xi0,X11} and Xp = X\Xy
X Ly I - 1" rank(Xy, x,) = 1 which is rank deficient,
] N §(1’ X, because Lg d-separates X, from Xp.
Xg LS

. = - -~ » X3  However, we cannot directly know the
2 <: . X, location of these latent variables in the graph

= Huang, Low, Xie, Glymour, Zhang, “Latent Hierarchical Causal Structure Discovery with Rank Constraints, NeurlPS

2022 179



Necessary & Suthicient Conditions on the
Structure: Linear, non-Gaussian case

Identfiable graphs with only 3 measured variables

Parametric Latent @
. =
Kb CRIET constraints? confounders? o @/;D \

No No (n) (iii) (1v)

L Yes  Yes O/ AN /o\@ AN
(Vl) (vii) (viii)
= Allow a large number of o ”5 -o—9 @
(IX) (x1) (xii)

latent variables /Q\ /O\\ /\ / /O\

F—0 © F—-0—0 &F—C

- Estimation 1s generally (xii) (xiv) (xv) (xvi)
difficult M /X /CX /X /3\ / /X
(xvii) (xviii) (xix) (xx)

/071/07\

©&—0O OO

(xxii)

- Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the
Non-Gaussian and Heterogeneous Cases,” NeurlPS 2021



Fstumating Latent Hierarchical Structure

Parametric Latent
constraints? confounders?

No No

i.i.d. data?

D ® B@

X: Xo 3 X: Xs Xe Xo Xs Xo

Xie, Huang Chen, He, Geng, Zhang, “Estimation of Linear Non-Gaussian Latent Hierarchical Structure,” ICML 2022
Huang, Low, Xie, Glymour, Zhang, “Latent Hierarchical Causal Structure Discovery with Rank Constraints, NeurlPS
2022

= Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the
Non-Gaussian and Heterogeneous Cases,” NeurlPS 2074



Outline

® Why?
® How?
® 11D case
® Linear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® From multiple distributions

® With temporal information



EON

Generalized Independent i %

Noise Condition (GIN) )"

ol

L,
= X1} Y = {X>, X3}
EOX.
N
c|L
C - X2 —b- X3

=c(bL1 + E3) — b(cL1 + E3) Nontrivial linear combination
—cEy — bEs, of X5 and X3 will involve

the noise term in L1,

independent from L; and from Xj,
hence dependent on X4

and we kno b OO’U(XQ,Xg)
W \A—
c Cov(Xy,X3) 176




Linear, Non-Gaussian Case: GIN

® Generalized Independent Noise (GIN) Condition:

(Z,Y) follows the GIN condition <—> QJTY JL /

where w ' Cov(Y,Z) = 0 and w # 0

® Graphical criterion

(Z,Y) follows the GIN condition iff

there is an exogenous set S of PA(Y) that
blocks all paths between Y and Z, where
0<=|S|<=min(|Z], |Y|-1)

177

Y

—

Lo

Ly

L

SICNE1E

Xi: observed variables
Li: latent variables



GIN Condition for Estimating Linear Non-
Gaussian Latent Graphs

® A two-step algorithm to identify the latent variable graph
- By testing for GIN conditions over the input Xi, -, X3

Step 2: determine causal structure of

Step 1: find causal clusters _
the latent variables

Cluster 1
L, /\ /@

L3 L . /7()
Cluster 3 >
(X
/@ Cluster 2 @
L, [ z( )
LzJ LzJL4
Z Y Z Y

- - N —— e N~ - ~
({le CU 7X47 X7v X8}7 {X5a XG}) ({X?)a X4}9 {Xla X2a X5})

oo . Cluster 3 Cluster 1 & 3
satisfies GIN condition

satisfies GIN condition
178



GIN-Based Method: Application to Teacher’s

Burnout Data

® (Contains 28 measured variables

®  Discovered clusters and causal order of Hypothesized model by experts
the latent variables: TR R ey
Causal Clusters Observed variables i_é
S, (D) RC,. RC,. WO,. WO,.
DM,, DM,
So (1) C'CL.OC,C0,.00,
S, (1) PS,. PS,
S, (1) ELC,. ELC,.ELC+.ELC,.
ELC:

S- (2) SE,.SE,.SE,. EE,.

EE,. EEs, DPy, PA
S, (3) DP,, PA,. PA,

L(S1) > L(S:) > L(Ss) > L(S5) > L(Sy) > L(Sy).

(from root to leaf)

Ref [Byrne, 2010]

® Consistent with the hypothesized model

= Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian
Latent Variable Causal Graphs,” NeurlPS 2020
= Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,” NeurlPS 2019



Outline

® Why?
® How?
® 11D case
® Linear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® From multiple distributions

® With temporal information



|dentifiability of nonlinear ICA: challenge

Is nonlinear ICA identifiable?

z = f(s)

Sources (s)

No, it's ill-posed without further

assumptions

Mixtures (x) Independent estimates

06 -04 -02 0 ) 0 5

183



|dentifiability of nonlinear ICA: auxiliary variables

Independence alone is too weak » Conditional independence is strong enough

S1, S2, ..., SN are conditionally independent

S1,S2, ..., SN are marginally independent given an auxiliary variable U (e.g., domain index)

S U

X z = f(s) S

X )

[Hyvarinen et al., Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning, AISTAT 2019]

184



|dentifiability of nonlinear ICA: structural sparsity

(Structural Sparsity) For all k € {1,...,n}, there exists Cy, such that S
() supp(Je(s)i:) = {k}.
1€Ch X
;5 11 S2 S3 S4 Ss Graphically, for every latent source s_li, there exists a
X le | Jele] set of observed variable(s) such that the intersection of their/its
S R i S | parent(s) is s_i
x;_) : : ] @
Xsli | ® ® Example: for s_1, there exists x_1 and x_4 such that the
:_3(;_:__.__[ : : _-!- : _- _- " _- —- :: intersection of their parents is s_1
I I
Xs | o ® Failure: two sources influence the same set of observed
| |

variables

[Zheng et al., On the Identifiability of Nonlinear ICA: Sparsity and Beyond, NeurlPS 2022]

185



|dentifiability of nonlinear ICA: real-world images

Line thickness

Angle

|dentification results on EMNIST

Each row represents an identified source with its value varying

186



Outline

® Why?
® How?
® 11D case
® Linear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case
® From multiple distributions

® With temporal information



Nonlinear ICA with Mulaple Domains

| i d. data? Parametric Latent
T ] constraints? confounders?
Yes No No
| No Yes Yes
® Nonlinear ICA: observed variables follow X = g(Z), in which Z; are

mutually independent
® Solutions to nonlinear ICA high non-unique

® If the dstr of each Z; change across multiple domains, generally their
are 1dentihable (up to component-wise transformations)

® Whyp [CRSSEEE S 1 = he2) 7 e
ﬂZ ......... > /> :_)AX} . 52 R y #ZI’Z__)XZ

= Hyvdrinen, Pajunen, Nonlinear independent component analysis: Existence and uniqueness results. Neural
networks, 1999.

= Hyvarinen, Sasaki, Turner, “Nonlinear ICA using auxiliary variables and generalized contrastive learning,” In
The 22nd International Conference on Artificial Intelligence and Statistics, 2019.



Partial Identifiability for Domain Adaptation

1 1

Lingjing Kong " Shaoan Xie

Weiran Yao

1

Yujia Zheng

1 3

Guangyi Chen?! Petar Stojanov

Victor Akinwande' Kun Zhang?!

Abstract

Unsupervised domain adaptation is critical to
many real-world applications where label informa-
tion is unavailable in the target domain. In general,
without further assumptions, the joint distribution
of the features and the label is not identifiable
in the target domain. To address this issue, we
rely on a property of minimal changes of causal
mechanisms across domains to minimize unnec-
essary influences of domain shift. To encode this
property, we first formulate the data generating
process using a latent variable model with two par-
titioned latent subspaces: invariant components
whose distributions stay the same across domains,
and sparse changing components that vary across
domains. We further constrain the domain shift to
have a restrictive influence on the changing com-
ponents. Under mild conditions, we show that
the latent variables are partially identifiable, from

189

domain indices u, the training (source domain) data follows
multiple joint distributions Py yiu,» Px.yluz> - Px.y|uns>
and the test (target domain) data follows the joint distri-
bution py |7, Where py |, may vary across uj, Uy, ...,
uys. During training, for each ¢-th source domain, we are
given labeled observations (x\”, y{”)™:  from Px,y|u,» and
target domain unlabeled instances (xg);”jl from py y|u7-
The main goal of domain adaptation is to make use of the
available observed information, to construct a predictor that

will have optimal performance in the target domain.

It is apparent that without further assumptions, this objective
is ill-posed. Namely, since the only available observations in
the target domain are from the marginal distribution py 7,
the data may correspond to infinitely many joint distribu-
tions py y|,7- This mandates making additional assump-
tions on the relationship between the source and the target
domain distributions, with the hope to be able to reconstruct
(identify) the joint distribution in the target domain py v, 7
Tvoicallv. these assumntions entail some measure of sim-



Iinding Changing Hidden Variables for "I'ranster
Learning

i d. data? Parametric Latent ¥

T ] constraints? confounders? S ’
Yes No No Z,— X
No Yes Yes

® Underlying components Zs may change across domains

® Changing components Zs are identifiable; invariant part Z. are identifiable up to its
subspace

~

® Using invariant part Z,. and transformed changing part Zs for prediction

Models — Art — Clipart  — Product — Realworld | Avg

Source Only (He et al., 2016) | 64.584+0.68 52.32+0.63 77.63£0.23 80.70+0.81 | 68.81
DANN (Ganin et al., 2016) 64.26+0.59 58.01+1.55 76.44+047 78.80+0.49 | 69.38
DANN+BSP (Chen et al., 2019) | 66.10+£0.27 61.03+0.39 78.13+0.31  79.924+0.13 | 71.29
DAN (Long et al., 2015) 68.28+0.45 57.92+0.65 78.45+0.05 81.93+0.35 | 71.64
MCD (Saito et al., 2018) 67.84+0.38 59.91+0.55 79.21+0.61 80.93+0.18 | 71.97
M3SDA (Peng et al., 2019) 66.22+0.52 58.55+0.62 79.45+0.52 81.35+0.19 | 71.39
DCTN (Xu et al., 2018) 66.92+0.60 61.82+0.46 79.20+0.58 77.78+0.59 | 71.43
MIAN (Park & Lee, 2021) 69.39+0.50 63.05+0.61 79.62+0.16 80.44+0.24 | 73.12
MIAN-v (Park & Lee, 2021) 69.884+0.35 64.20+0.68 80.87+0.37 81.49+0.24 | 74.11
iMSDA (Ours) 75.77+£0.21 60.83+0.73 84.13+0.09 84.83+0.12 | 76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

Kong, Xie, Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022



Finding Hidden Varnables With Changing

Relations
| .. Parametric Latent
2 0 0> 0 0 0
| B2 QR constraints? confounders? %\ %\ X A\l\ ?\
Yes No No | | @ | |
| No Yes Yes @ > Z9 \\f}@ >@

~

® With sparsity of the graph over the estimated variables Z;, with a suitable

permutation over them, Z; 1s a function of Z; and all Z; that are adjacent to Z; and
all the other neighbors of Z; in the Markov network

® Recovered DAG and the original DAG have the same topology

® g, can be recovered up to component-wise mvertible transformations; so roughly
speaking, Z; can be recovered

= Ongoing work



Outline

® Why?
® How?
® 1ID case
® Linear-Gaussian case
® Linear, non-Gaussian case
® Nonlinear case

® From multiple distributions

® With temporal information



Temporally Disentangled Representation Learning

Weiran Yao Guangyi Chen Kun Zhang
CMU CMU & MBZUAI CMU & MBZUAI
welran@cmu.edu guangyichenl994@Qgmail.com kunzl@cmu.edu
Abstract

Recently in the field of unsupervised representation learning, strong identifiability
results for disentanglement of causally-related latent variables have been estab-
lished by exploiting certain side information, such as class labels, 1n addition to
independence. However, most existing work is constrained by functional form
assumptions such as independent sources or further with linear transitions, and
distribution assumptions such as stationary, exponential family distribution. It is
unknown whether the underlying latent variables and their causal relations are
identifiable if they have arbitrary, nonparametric causal influences in between. In
this work, we establish the identifiability theories of nonparametric latent causal
processes from their nonlinear mixtures under fixed temporal causal influences
and analyze how distribution changes can further benefit the disentanglement. We
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Learning Latent Causal Dynamics

iid. data? T arametric Latent Learn the underlying causal dynamics from
T " constraints? confounders? their mixtures?

No “lime-delayed” influence renders latent
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Yes
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= Yao, Chen, Zhang, “Causal Disentanglement for Time Series,” NeurlPS 2022

= Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,”
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Comparisons

iid. data? T arametric Latent Learn the underlying causal dynamics from
T ' constraints? confounders? their mixtures?

No “lime-delayed” influence renders latent
processes & their relations 1identihiable

Yes

Yes

Table 1: Attributes of nonlinear ICA theories for time-series. A check denotes that a method has an
attribute or can be applied to a setting, whereas a cross denotes the opposite. T indicates our approach.

Theo Time-varying Causally-related Partitioned Nonparametric Applicable to
ry Relation Process Subspace Transition Stationary Environment
PCL X X X v v
GCL v X X v v
HM-NLICA X X X X X
SlowVAE X X X X v
SNICA v v X X X
i-VAE v X X X X
LEAP X v X v X
TDRL | v v v v v

= Yoo, Chen, Zhang, “Causal Disentanglement for Time Series,” NeurlPS 2022
= Yoo, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,”
ICLR 2022



Results on Video Data

® Tor easy interpretation, consider two simple video data sets

® KiTTiMask: a video dataset ~ ® Mass-spring system: a video
ol biary pedestrian masks dataset with ball movement
and mnvisible springs
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= Yoo, Chen, Zhang, “Learning Latent Causal Dynamics,” NeurlPS 2022
= Yoo, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,”
ICLR 2022









Causal Representation Learning: A Summary

i.i.d. data? Paramc_atrlc Latent What can we get?
constraints? confounders?
No
NG (Different types of)
equivalence class
Yes
Yes
No Unique identifiability
Yes (under structural
Yes conditions)
No (Extended) regression
Non-I, but [.D. No/Yes
Latent temporal causal
Yes . .
processes identifiable!
NG More informative than
\ MEC (CD-NOD)
o)
May have unique
ves identifiability
|., but non-1.D. ,
NG Changing subspace
identifiable
Yes _ . .
Yes Variables in changing
relations identifiable




Summary

® Issential to learn hidden causal variables in many cases!
® Possible to achieve even in the IID case

® Benefit from distribution changes and temporal
information

® Future work
® Lfficient procedure?
® Necessary and sufficient identifiability conditions?

® Changing relations among hidden variables?
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