
Tools on Causality

Causal Discovery & causal-learn

Instructor: Yujia Zheng

Most slides are from Kun Zhang



Outline

• Lecture 1&2 (Monday): Introduction of 
causal discovery and causal-learn. 

• Lecture 3 (Tuesday): Lab for small 
projects.

• Lecture 4 (Thursday): Presentations



Project
• Flexible small projects
• Incorporating causal discovery into any topics of interests.
• Demo, analysis, report, complaint…
• Groups of one or two people.

• Timeline:
1. By Monday 23:59: Grouping information. Send it to 

yujiazh@cmu.edu or Slack channel.
2. Tuesday afternoon: Guided lab to work on projects.
3. Thursday afternoon: Small presentations. Length 

depends on the grouping information.

mailto:yujiazh@cmu.edu


A Big Picture of Causal Discovery

•Necessity of causality

•Causality from observational data

•Quick examples on the advancements



A Problem with Photo 
Categorization by Google Photos

Google apologizes for algorithm mistakenly calling black people 

'gorillas'



A Bit Noise can Dramatically 
Change Machines’ Decision

(Goodfellow, 2015)



Artificial “Intelligence”
•Traditional machine learning usually assumes a fixed data 

distribution; avoids overfitting

•Intelligence: understanding; control/intervention; 
decomposability; information fusion,  learning with few 
examples, extrapolation



Causality Examples



Causality Examples



Causality vs. Dependence

•Causality ➜ dependence ! Dependence ➜ causality 

3

X is a cause of Y iff 

∃x1 ≠ x2 P(Y|set X=x1) ≠ P(Y|set X=x2) 
X and Y are associated iff 
∃x1 ≠ x2 P(Y|X=x1) ≠ P(Y|X=x2)

(http://imgs.xkcd.com/comics/correlation.png)

http://imgs.xkcd.com/comics/correlation.png


Classic Ways to 
Find Causal 

Information (i.i.d. 
Case)

•What if X and Y are 
dependent?

•What if you change X and 
see Y also changes?

•What if you manipulate X 
and see Y also changes?

•A manipulation directly 
changes only the target 
variable X



Possible to 

discover causal information (specific 
properties of the true process) 

from purely observational data ?

X   Y
-------------

-1.1   1.0
2.1        2.0
3.1    4.2
2.3      -0.6
1.3   2.2
-1.8   0.9
...    ....

X Y

X Y

X Y

or

or
Z

Causal Discovery



Causality Examples



(Simple) Causal Discovery as an 
Estimation Problem

X1 X3

X2

X4

X1        X2     X3      X4 
-------------

-1.1    1.0    1.3     0.2 
   2.1    2.0    3.1    -1.3
 3.1    4.2    2.6     0.6 
  2.3    -0.6   -3.5    0.8
 1.3    2.2     0.9    2.4

  -1.8    0.9    -1.3    0.9 
...       …     …       ...

Data

Mysteries.
.. 0 0 0 0

1 0 1 0

0 0 0 0

0 1 0 0

X1 X2 X3 X4

X1

X2

X3

X4

Linear identifiable cases, 
find:  X = B·X + E

Nonlinear identifiable cases, 
find 𝑋𝑋𝑖𝑖 = 𝑓𝑓𝑖𝑖(PA𝑖𝑖 ,𝐸𝐸𝑖𝑖)

What if there are latent confounders?



Temporal Order Often Helpful. 
I.I.D. Case More Difficult.
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• Causal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993)

• Causal discovery (Spirtes et al., 1993)/ causal representation learning (Schölkopf 
et al., 2021): find such representations with identifiability guarantees

• Three dimensions of the problem:

Uncover Causality from 
Observational Data?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of causality in data



Causal Discovery in Archeology: An Example

• 8 variables of 250 skeletons collected from different locations

Thanks to Marlijn Nobacki.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes



• By PC algorithm (Spirtes et al., 1993) + kernel-based conditional 
independence test (Zhang et al., 2011)

Result of PC on the Archeology Data
Thanks to collaborator Marlijn Noback



• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• By PC algorithm + kernel-based conditional independence test 
(Zhang et al., 2011)

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. paramasticatory 
behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D)

7. climate (6D) 8. cranial shape 
differentiation 

(255D)

reported

Result on the Archeology Data
Thanks to collaborator Marlijn Noback



A Problem in Psychology: Finding Underlying 
Mental Conditions?

•50 questions for big 5 personality test 



Learning Hidden Variables & Their Relations

Latent variables & 
their causal structure

• Find latent variables Li and their causal relations ?

• Rank deficiency or GIN helps solve the problem

• Measured variables (e.g., answer scores in psychometric questionnaires) 
were generated by causally related latent variables

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes
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Example: Big 5 Questions Are Well Designed 
but…

Big 5: 
openness; conscientiousness; extraversion; agreeableness; neuroticism

Nice results by Xinshuai Dong

https://en.wikipedia.org/wiki/Conscientiousness


Learning Latent Causal Dynamics

Latent processes
Recovered latent 

processes

Latent temporal causal 
processes zit can be recovered if 
they follow

- completely 
nonparametric model; or 
furthermore,

- non-stationary noise; or 
- non-stationary causal 

influence, or 
- Parametric constraints 

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes

Learn the underlying causal dynamics from 
their mixtures?

“Time-delayed” influence renders latent 
processes & their relations identifiable

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” 

ICLR 2022



Results on Video Data 

•For easy interpretation, consider two simple video data sets

KiTTiMask
Video

Learned 
latent processes

(Movement 
in a direction)

(Movement in an 
orthogonal direction)

(Size)

Interpretation

•KiTTiMask: a video dataset 
of binary pedestrian masks

•Mass-spring system: a video 
dataset with ball movement 
and invisible springs

Mass-spring
Video

Learned 
latent processes

Interpretation

(x- & y- 
coordinates

 of the 5 balls)

- Yao, Chen, Zhang, “Learning Latent Causal Dynamics,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” 

ICLR 2022









• Reichenbach’s common cause principle (“The Direction of Time”, 
1956)

• Markov condition (Kiiveri et al., 1984)

• “Causation, Prediction, and Search” (Spirtes, Glymour, & Scheines, 
1993)

• Faithfulness condition, PC algorithm, SGS, FCI, Tetrad program…

• “Causality: Models, Reasoning and Inference” (Pearl, 2000)

• Greedy equivalence search (GES) (Chickering, 2003)

• Functional causal model-based methods (LiNGAM, PNL… since 
2005)

• Latent variable recovery: Factor analysis (Spearman, 1904), Tetrad 
condition (Spearman & CMU), Latent tree structure (Pearl et al., 
1989), measurement model (CMU 2006), GIN (GDUT & CMU), 
rank deficiency (CMU)…

Causal Discovery: A Bit of History



Graphical Models

•Graphical models

•d-separation

•Connection between conditional independence in graphs 
and that in data?

•Causal interpretations?



Intuitive Way of Representing 
and Visualizing Relationships

?

?

27



Graphical Models
• A graph comprises nodes (also called vertices) connected by links 

(also known as edges or arcs) 

• Probabilistic graphical models: graph-based representation as the 
basis for compactly encoding a complex distribution

• Node: a random variable (or group of random variables)

• Links: direct probabilistic interactions between them

• Categorization: Undirected graphs vs. directed acyclic graphs (DAGs)

Probability theory    +    graph theory

represent uncertainty & 
interface models to data intuitively appealing interface for humans

28



Directed Acyclic Graphical Models

• Also known as Bayesian networks or 
belief nets

• Two components

• Graph structure (qualitative 
specification)

• prior knowledge of causal/modular 
relationships, or expert knowledge

• learned from data

• Conditional probability 
distributions (CPDs)

• discrete variables : conditional 
distribution tables (CPTs)

• continuous variables: SEMs
29

Terms: 
nodes, edge, adjacent, 

path;
parents, children, spouses, 

ancestors, descendants, 
Markov blanket



Tasks Related to Bayesian Networks

• Probabilistic inference: Calculate 
P(variables of interest | observed 
variables)

• Most common task where we 
want to use Bayesian networks

• How to find P(S=1|W=1)? 
P(R=1|W=1)?

• Parameter learning

• Structure learning: Learning the 
structure of the graphical model 
from observations

30



Bayesian Networks: Story

• Breakthrough in early 1980s (by Pearl et al.) 

• In a joint probability distribution, every variable is, in general, related 
to all other variables. 

• Pearl and others realized: 

• It is often reasonable to make the assumption that each variable is 
directly related to only a few other variables

• This leads to modularity: Allowing decomposing a complex model 
into small manageable pieces

• Giving rise to Bayesian networks

31



What Independence 
Relationships Can You See?

smoking

cancer yellow 
finger

rain

slippery 
ground

falling down

32



(Local) Markov Condition

• Each variable is independent from its non-descendants given its 
parents

smoking

cancer yellow 
finger

rain

slippery 
ground

falling down

33



For Instance, What Independence 
Relations can You See?

?

?

34



Is Local Markov Condition 
Enough?

• Can we see whether two arbitrary variables, X and Y, are 
conditionally independent given an arbitrary set of variables, Z ?

35



D-Separation Tells Conditional 
Independence

• If every path from a node in X to a node in Y is d-separated by Z, then X 
and Y are always conditionalIy independent given Z

• d: directional...  You will see why

36



D-Separation
• A set of nodes Z d-separates two sets of nodes X and Y if every path 

from a node in X to a node in Y is blocked given Z.

• A path p is blocked by a set of nodes Z if 

• p contains a chain i→m→j or a common cause i ←m→j such that 
the middle node m is in Z, or

• p contains a collider i→m←j such that the middle node m is in not Z 
and no descendant of m is in Z

X and Y d-separated by {R, V}?
S and U d-separated by {R, V}? X and Y d-separated by {R, P}?

X R S T U V Y
X R S T U V Y

W P Q

37



D-Separation

• A path p is blocked by a set of nodes Z if 

• p contains a chain i→m→j or a 
common cause i ←m→j such that 
the middle node m is in Z, or

• p contains a collider i→m←j such 
that the middle node m is not in Z 
and no descendant of m is in Z

• A set of nodes Z d-separates two sets of nodes X and Y if every path 
from a node in X to a node in Y is blocked given Z.

A and E d-separated by B ?
A and E d-separated by {B, M} ?

38



D-Separation: Intuition

• Suppose X and Y are d-
separated by Z

• Then if you fix Z, X and Y 

• do not cause each other and 

• do not share a common cause

• X and Y are independent 
(conditional on Z)!

X

R

S

T

U

V

Y
1. X and Y d-separated by {R}?
2. X and Y d-separated by {R, T}?
3. X and Y d-separated by {T, V}?
4. X and V d-separated by ∅ ?



D-Separation: Intuition (2)
A

B

C

D

E

F

G

Given Z... conditioning on Z (given the same value of Z)40



Local & Global Markov 
Conditions

• Local Markov condition: 

• In a DAG, a variable X is 
independent of all its non-
descendants given its parents

• Global Markov condition: 

• Given a DAG, let X and Y be two 
variables and Z be a set of 
variables that does not contain 
X or Y. If Z d-separates X and Y, 
then  X⫫Y | Z.

• Actually equivalent on DAGs!
41



Markov Blanket
• In a DAG, the Markov Blanket of a node X is the set consisting of 

• Parents of X

• Children of X

• Parents of children (i.e., spouses) of X

• In a DAG, a variable X is conditionally independent from all other 
variables given its Markov Blanket

• Implied by d-separation...

• The Markov blanket of I ?

42



We learn DAGs. Are They Always 
Causal?

• Causality is not only conditional independence. 

• How can we be sure the DAG is causal

43



Causal DAGs

• Bayesian networks: DAGs

• Causal DAGs

• More meaningful & able to represent and respond 
to external or spontaneous changes

Let Px(V) be the distribution of V resulting from 
intervention do(X=x). A DAG G is a CBN if

1. Px(V) is Markov relative to G;
2. Px(Vi=vi)=1 for all Vi ∈X and vi consistent 

with X=x;
3. Px(Vi | PAi) = P(Vi | PAi) for all Vi ∉X, i.e., 

P(Vi | PAi) remains invariant to interventions not 
involving Vi.

What is 
PX3=ON(X1,X2,X4,X5)?

44



Structural Causal Models

• Xi = fi (PAi, Ei), i=1,...,n

• Ei: exogenous variables / errors / disturbances

• Each equation represents an autonomous 
mechanism

• Describes how nature assigns values to 
variables of interest

• Distinction between structural equations & 
algebraic equations

• Associated with graphical causal models

X1 = E1,
X2 = f2 (X1 , E2),
X3 = f3 (X1 , E3),
X4 = f2 (X3 , X2 , E4),
X5 = f5 (X4 , E5)

XiPAi

45



We can See CI Relations from 
DAGs...

• Local Markov condition

• Global Markov condition

• d-separation implies conditional independence:



CI from Data...

• We are able to see CI relationships from DAGs. 

• How can we see that from data?

• Useful to find information of the underlying DAG, especially 
under the faithfulness assumption 

47



Independence in Linear-
Gaussian Case

• If X and Y are jointly normally distributed, their independence ⇔ 
their zero correlation

• Zero correlation can be tested with, say, Fisher’s z test

• Calculate sample correlation coefficient (statistic):

• Under H0 (zero correlation), 

• Given the statistic and its null distribution, we can find p value

48



Conditional Independence in Linear-
Gaussian case: Partial Correlation

• Partial correlation: “Relationship” 
between X and Y while eliminating influence 
of Z

• Regress X and Y on Z, respectively 

• Partial correlation ρXY·Z is the 
correlation between residuals RXZ and  
RYZ

• If X, Y, and Z are jointly normally 
distribution, X⫫Y | Z ⇔ ρXY·Z = 0

• We can then test for zero partial 
correlation (‘partialcorr’ in MATLAB)

Z

X

<α, Z>

RXZ

<β, Z>

RYZ
Y

49



• Connection between causal structure and statistical data 
under suitable assumptions 

• Note this “irrelevance”: 

If there is no common cause of X and Y, the generating 
process for cause X is irrelevant to (“independent” from) that 
generates effect Y from X

What Information Helps Find Causality?

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…



Causal Sufficiency

• A set of random variables V is causally 
sufficient if V contains every common 
cause (with respect to V) of any pair of 
variables in V

• V = {X,Y,Z}: causally sufficient

• V = {X,Y}: causally insufficient 

• Methods exist in causally insufficient 
cases, e.g., FCI (Chapter 6 of the SGS 
book)

X Y

Z

SGS Book, Chapter 5 (for causally sufficient structures); Chapter 6 (without causal sufficiency)



V-Structures

cold winter snow

slippery 
ground

Why so interesting?



Going from CI to Graph?

• Contrapositive:

• Conditional dependence implies d-connection

• What if variables are conditionally independent?

• Can we recover the property of the underlying graph from CI 
relations with Markov condition?

• Arbitrary P(V) would satisfy the global Markov condition 
according to Gf in which there is an edge between each pair 
of variables: trivial !

• Under what assumptions can we have CI ⇒ d-separation?



Causal Structure vs. Statistical Independence (SGS, et 
al.)

 Y → X → Z
 Y      Z | X

Recall

Y -- X -- Z ?

Causal Markov condition: each variable is ind. of its non-descendants (non-
effects) conditional on its parents (direct causes)

Faithfulness: all observed (conditional) independencies are entailed by Markov 
condition in the causal graph



Faithfulness Assumption

health 
condition

• One may find independence between health condition & risk of 
mortality and between swimming skills & risk of drowning. Why?

mortality 
risk

healthy 
lifestyle

-

- -
swimming 

skills
risk of 

drowning

carelessne
ss

-
+ +

• E.g., if they are linear-Gaussian and a=-bc, then health_condition 
⫫ risk_mortality, which cannot by seen from the graph!

• Faithfulness assumption eliminates this possibility!

a
b c



Constraint-based Causal Discovery

•Without confounders: PC

•With confounders: FCI



(Typical) Constraint-Based Causal 
Discovery

•Conditional independence constraints between each variable 
pair

• Illustration: the PC algorithm

• Extensions: the FCI algorithm…

X1⫫X5 | X3

X2⫫X4 | X1

X2⫫X5 | X3

X4⫫X5 | X3

X1⫫X3 |{X2, 
X4}

X2 X4

X3

X5

X1

- Spirtes, Glymour, and Scheines. Causation, Prediction, and Search. 1993.



Constraint-Based Causal Discovery
• (Conditional) independence constraints ⇒ 

candidate causal structures

• Relies on causal Markov condition & 
faithfulness assumption

• PC algorithm (Spirtes & Glymour, 1991)

• Step 1: X and Y are adjacent iff they are 
dependent conditional on every subset of the 
remaining variables (SGS, 1990)

• Step 2: Orientation propagation

• v-structure 

• Markov equivalence class, represented by 
a pattern

• same adjacencies; → if all agree on 
orientation; ⎯ if disagree

Y⫫Z | X

Y      Z 

X

Y Z

X

Y Z

X

Y Z

X

Y Z

X

Y Z

generating

inferring

Y⎯X⎯Z 3 possibilities:



Example I
Step 1: finding skeleton

X1⫫X2 :



Example I
Step 1: finding skeleton

X1⫫X2 :

Step 2:  finding v-structure 
and doing orientation 

propagation



Example I
Step 1: finding skeleton

X1⫫X2 :

Step 2:  finding v-structure 
and doing orientation 

propagation



PC 
Algorithm

Test for (conditional) 
independence with an 

increased cardinality of 
the conditioning set

Finding V-
structures

Y

X Z

Orientation propagation



PC 
Algorithm

Test for (conditional) 
independence with an 

increased cardinality of 
the conditioning set

Finding V-
structures

Y

X Z

Orientation propagation

Avoid spurious v-structures: Away from cycles:



(Independence) Equivalent 
Classes: Patterns

• Two DAGs are (independence) equivalent if and only if they have the 
same skeletons and the same v-structures (Verma & Pearl, 1991) 

• Patterns or CPDAG (Completed Partially Directed Acyclic Graph): 
graphical representation of (conditional) independence equivalence 
among models with no latent common causes (i.e., causally sufficient 
models)

X1 and X2 are not adjacent in any 
member of the equivalent class

X1→X2 in every member of the 
equivalent class

X1→X2 in some members of the 
equivalent class, and X1←X2 in 

some others
How many DAGs 

in this class?



Example II (From SGS Book)
Step 1

Pattern

Step 1I



Example II (From SGS Book)
Step 1

Pattern

Step 2

See demo with Tetrad…



Example 2: College Plans

Sewell and Shah (1968) studied five variables from a sample of 
10,318 Wisconsin high school seniors. 

SEX                            [male = 0, female = 1]
IQ = Intelligence Quotient [lowest = 0, highest = 3] 
CP = college plans            [yes = 0, no = 1] 
PE = parental encouragement [low = 0, high = 1]
SES = socioeconomic status [lowest = 0, highest = 3]



• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• By PC algorithm + kernel-based conditional independence test 
(Zhang et al., 2011)

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. paramasticatory 
behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D)

7. climate (6D) 8. cranial shape 
differentiation 

(255D)

reported

Result on the Archeology Data
Thanks to collaborator Marlijn Noback



• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• By PC algorithm + kernel-based conditional independence test 
(Zhang et al., 2011)

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. paramasticatory 
behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D)

7. climate (6D) 8. cranial shape 
differentiation 

(255D)

reported

Result on the Archeology Data
Thanks to collaborator Marlijn Noback



• 8 variables of 250 skeletons collected from different locations

• Different dimensions (from 1 to 255) with nonlinear dependence 

• By PC algorithm + kernel-based conditional independence test 
(Zhang et al., 2011)

1. gender (1D) 2. cranial size (1D) 3. diet (5D)

4. paramasticatory 
behavior (5D)

5. level of attrition (2D)

6. population history 
represented by 

geodistance (3D)

7. climate (6D) 8. cranial shape 
differentiation 

(255D)

reported

Result on the Archeology Data
Thanks to collaborator Marlijn Noback



PC by causal-learn



PC by causal-learn



Dealing with Confounders?

Possible to have confounders 
behind X3 and X4?

X1 X2

X3

X4

Example I

C



Dealing with Confounders?

Possible to have confounders 
behind X3 and X4?

X1 X2

X3

X4

Example I

Example II

Are there confounders 
behind X2 and X4? X1 → X2 X4←X3

(See the FCI algorithm)



Dealing with Confounders?

Possible to have confounders 
behind X3 and X4?

X1 X2

X3

X4

Example I

Example II

Are there confounders 
behind X2 and X4? X1 → X2 X4←X3

L



Dealing with Confounders?

Possible to have confounders 
behind X3 and X4?

X1 X2

X3

X4

E.g., X1: Raining; X3: wet ground; X4: slippery.

Example I

Example II

Are there confounders 
behind X2 and X4? X1 → X2 X4←X3

L

E.g., X1: I am not sick; X2: I am in this lecture room; X4: you 
are in this lecture room; X3: you are not sick.

(See the FCI algorithm)



I know There Is No 
Confounder: Example

• In the 1970s, the Edison Electric Company in North Carolina was concerned about the 
effects on plant growth of acid rain produced by emissions from its electric generators.

• The investigators chose samples from the Cape Fear estuary, where the Cape Fear River 
flows into the Atlantic Ocean.

• obtained 45 samples of Spartina grass up and down the estuary, and measured 13 
variables in the samples, including concentrations of various minerals, acidity (pH), 
salinity, and the outcome variable, the biomass of each sample

• The PC algorithm found that among the measured variables the only direct cause of 
biomass was pH.

• Y-structure: no confounder!

• Later verified by intervention-based analysis

PH

Biomass

…

*



I Know There must Be 
Confounders: examples

• X1: I am not sick; X2: I am in class; X4: you are in 
class; X3: you are not sick

• X1: European/South American country; X2: leading 
in science; X4: Chocolate consumption; X3: meat 
supply per person

World map of chocolate consumption

X1 → X2 X4←X3

L*



The Second Example…

X1 → X2 X4←X3

L
L: a latent variable

- There must exist some confounder for X2 and X4.

- In the presence of latent variables, the causal process over measured 
variables O is not necessarily a DAG. How can we represent (independence) 
equivalence classes over O ?



FCI (Fast Causal Inference) 
Allows Confounders

X1 → X2 X4←X3

L

• Assume the distribution over measured variables O is the marginal of a 
distribution satisfying the Markov and faithfulness conditions for the true 
graph

• Results represented by PAGs (Partial Ancestral Graphs)

What’s FCI’s output?

Spirtes et al., Causal inference in the presence of latent variables and selection bias, 1997



Remember the Output of PC? (Independence) 
Equivalent Classes: Patterns

• Two DAGs are (independence) equivalent if and only if they have the 
same skeletons and the same v-structures (Verma & Pearl, 1991) 

• Patterns or CPDAG (Completed Partially Directed Acyclic Graph): 
graphical representation of (conditional) independence equivalence 
among models with no latent common causes (i.e., causally sufficient 
models)

X1 and X2 are not adjacent in any 
member of the equivalent class

X1→X2 in every member of the 
equivalent class

X1→X2 in some members of the 
equivalent class, and X1←X2 in 

some others
How many DAGs 

in this class?



PAGs: What Edges Mean?



FCI by causal-learn



Summary: Constrain-based approach and 
extensions

• Conditional independence relations help in causal 
discovery

• What assumptions are needed

• Constraint-based approach

• Confounders?



Score-based Causal Discovery

•Possibility

•GES



Constraint-Based vs. Score-Based
• Constraint-based methods

• Score-based methods

X1    X2  X3     X4 
-------------

-1.1   1.0    1.3    0.2 
   2.1   2.0   3.1  -1.3    
3.1   4.2   2.6   0.6   
2.3  -0.6  -3.5   0.8
1.3   2.2   0.9   2.4 

   -1.8   0.9  -1.3  0.9 
…    …     …    …

X1⫫X3

X1⫫X4 | X2

X3⫫X4 | X2

X1 X3

X2

X4

X1 X3

X2

X4

X1 X3X2 X4

X1 X3X2 X4

score 1

score 2

score 3...
...

Which 
one is 

the 
best?

(Score may be BIC, AIC, etc.)

X1     X2   X3     X4 
-------------

-1.1   1.0     1.3  0.2        
2.1   2.0    3.1     -1.3          
3.1  4.2     2.6  0.6
 2.3    -0.6    -3.5  0.8
1.3   2.2     0.9  2.4          

-1.8    0.9    -1.3    0.9 
...       ...      ...       ...



Why Is It Possible?

- Increases the number of 
parameters to be fitted; 

Wrong assumptions about 
causality and domain 
structure

Adding an arc

- Cannot be compensated by 
accurate fitting of parameters; 

Also misses causality and 
domain structure

Missing an arc

“True” structure



Key Issues

• What score to use?

• How to traverse the search space of the graph? 

• DAGs? Equivalence classes?

• How to do optimization?



Searching for Network Structure
X1 X3

X2

X4

• Sad news: Given a complete dataset and no hidden variables, locating the 
Bayesian network structure that has the highest posterior probability is NP-
hard (Chickering, 1996; Chickering, et al, JMLR, 2004). 

• Greedy search often used

• Some algorithms guarantee locating the generating model in the large 
sample limit (assuming Markov, Faithfulness, and some other conditions); 
e.g., the GES algorithm (Chickering, JMLR, 2002)

• The ability to approximate the generating network is often quite good

Chickering, Learning Bayesian networks is NP-complete, Learning from Data, 1996



GES (Greedy Equivalence Search): 
Score Function

• Assumptions: The score is

• score equivalent (i.e., assigning the same score to equivalent DAGs)

• locally consistent: score of a DAG increases (decreases) when adding 
any edge that eliminates a false (true) independence constraint

• decomposable: 

• E.g., BIC:

Chickering, Optimal Structure Identification With Greedy Search, Journal of Machine Learning Research, 
2002



GES: Search Procedure
• Performs forward (addition) / backward (deletion) equivalence search 

through the space of DAG equivalence classes

• Forward Greedy Search (FGS)

• Start from some (sparse) pattern (usually the empty graph)

• Evaluate all possible patterns with one more adjacency that entail strictly 
fewer CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum

• Backward Greedy Search (BGS)

• Start from the output of Stage (1)

• Evaluate all possible patterns with one fewer adjacency that entail strictly 
more CI statements than the current pattern

• Move to the one that increases the score most

• Iterate until a local maximum



GES X

Y

Z

Suppose data were generated by

X

Y

Z

(1)

X

Y

Z

(2)



GES Z1

Y

Z3

Suppose data were generated by X Z2

Imagine the GES procedure...

Z4



GES by causal-learn



Practical Issues

•Missing data

•Nonstationary/heterogenous data



Issue 1: Causal Discovery in the 
Presence of Missing Data

• Conditional independence relations in the data are sensitive to the 
missingness mechanism 

• Key issue: Recover conditional independence relations in the original 
population from incomplete data

R. Tu, C. Zhang, P. Ackermann, K. Mohan, H. Kjellström, C. Glymour, K. Zhang, “Causal discovery in 
the presence of missing data,” AISTATS 2019



Causal Discovery in the Presence of 
Missing Data

• R is the set of missingness indicators that represent the status of 
missingness

• If RX is 1, the corresponding value of X is missing; if it is 0, it is 
observed

• Missingness graph



Categories of Missing Data Mechanism

• All missing data mechanisms fall into one of the following three 
categories (Rubin, 1976): 

• Data are Missing Completely At Random (MCAR) if the cause of 
missingness is purely random.

• Data are Missing At Random (MAR) when the direct cause of 
missingness is fully observed. 

• Data that are neither MAR nor MCAR fall under the Missing Not 
At Random (MNAR) category.



Assumptions for the Method
• Assumption 1 (Missingness indicators are not causes): No 

missingness indicator can be a cause of any substantive 
(observed) variable.

• Assumption 2 (Faithful observability): Any conditional 
independence relation in the observed data also holds in the 
unobserved data.

• Assumption 3 (No deterministic relation between missingness 
indicators): No missingness indicator can be a deterministic 
function of any other missingness indicators.

• Assumption 4 (No self-masking missingness): Self-masking 
missingness refers to missingness in a variable that is caused by 
itself.

*



Missing-Value PC (MVPC)

• Add missingness variables R to the dataset with measured variables V

• Create knowledge that R variables do not cause V variables

• Run PC adjacency search over V∪R

• Identify adjacencies over V in triangles over V∪R-–these might be 
false positives!

• Try to remove these extra adjacencies using correction…

• Finally, do collider orientation and apply the Meek rules to graph G 
over V



MVPC by causal-learn



Issue 2: Nonstationary/Heterogeneous Data 
and Causality

• Ubiquity of nonstationary/heterogeneous data

• Nonstationary time series (brain signals, 
climate data...)

• Multiple data sets under different 
observational or experimental conditions

• Causal modeling & distribution shift heavily 
coupled

• P(cause) and P(effect | cause) change 
independently

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from 
Heterogeneous/Nonstationary Data," JMLR, 2020 
Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018



Issue 2: Nonstationary/Heterogeneous Data 
and Causality

• Ubiquity of nonstationary/heterogeneous data

• Nonstationary time series (brain signals, 
climate data...)

• Multiple data sets under different 
observational or experimental conditions

• Causal modeling & distribution shift heavily 
coupled

• P(cause) and P(effect | cause) change 
independently

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from 
Heterogeneous/Nonstationary Data," JMLR, 2020 
Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018



Causal Discovery from 
Nonstationary/Heterogeneous Data

• Method to determine changing causal 
modules & estimate skeleton

• Causal orientation determination benefits 
from independent changes in P(cause) and 
P(effect | cause)

• How do the nonstationary modules change 
over time / across data sets?

Kernel nonstationary 
driving force estimation

•Questions to answer:



Discovery & Visualization of 
Changing Causal Modules

• Identify variables 
with changing 
causal modules & 
recover causal 
skeleton?

• Identify causal 
directions by using 
distribution shifts?

• Visualize the 
change in causal 
modules?

With our proposed approach:

Kernel nonstationarity 
visualization (KNV)

* Questions to answer for causal discovery:

• Incorporate time/domain 
index C as a surrogate + 
apply constraint-based 
causal discovery methods

• Independent changes in 
P(cause) and P(effect | 
cause)

• Find a mapping of P(Vi 

|PAi ) to capture its 
variability105



Causal Analysis of Major Stocks in Hong 
Kong Market (10/09/2006 - 08/09/2010)

1. Cheng Kong Holdings,
2. Wharf (Holdings),
3. HSBC,
4.Hong Kong Electric Holdings,
5. Hang Seng Bank,
6. Henderson Land Dev.,
7. Sun Hung Kai Properties,
8. Swire Group,
9. Cathay Pacific Airways
10. Bank of China Hong Kong 

- HSF and HSP usually have 
nonstationary confounders

106



Nonstationarity
Visualization

business & properties

(https://research.stlouisfed.org/fred2/series/TEDRATE)

bank

bank

utilities

properties

properties

Finance Properties

Commerce & Industry

Utilities

1. Cheng Kong Holdings,
2. Wharf (Holdings),
3. HSBC,
4.Hong Kong Electric Holdings,
5. Hang Seng Bank,
6. Henderson Land Dev.,
7. Sun Hung Kai Properties,
8. Swire Group,
9. Cathay Pacific Airways
10. Bank of China Hong Kong 107

https://research.stlouisfed.org/fred2/series/TEDRATE


Nonstationarity
Driving Force

1. Cheng Kong Holdings,
2. Wharf (Holdings),
3. HSBC,
4.Hong Kong Electric Holdings,
5. Hang Seng Bank,
6. Henderson Land Dev.,
7. Sun Hung Kai Properties,
8. Swire Group,
9. Cathay Pacific Airways
10. Bank of China Hong Kong 

(Curve of TED spread;
https://research.stlouisfed.org/fred2/series/TEDRATE)

T1: 07/16/2007, 
T2: 06/30/2008, 
T3: 02/11/2009

https://research.stlouisfed.org/fred2/series/TEDRATE


Causal Analysis of Major Stocks in NYSE 
(07/05/2006 - 12/16/2009)

Huang, Zhang, Zhang, Romero, Glymour, Schölkopf, Behind Distribution Shift: Mining Driving 
Forces of Changes and Causal Arrows,” ICDM 2017 109



CD-NOD by causal-learn



From MECs to DAGs (1)

•Distinguishing cause from effect

•Linear, non-Gaussian, acyclic models



Distinguishing Cause from Effect: 
Examples (Tübingen Cause-Effect Pairs)



A Causal Process

113

funcX

E

Y

rain
wet 

ground



Functional Causal Models

• Effect generated from cause with independent noise (Pearl et al.):           

• A way to encode the intuition “the generating process for X is ‘independent’ 
from that generates Y from X”

• :-( Without constraints on f, one can find independent noise for both 
directions (Darmois, 1951; Zhang et al., 2015) 

• Given any X1 and X2, E’ := conditional CDF of X2 | X1 is always independent from 
X1 and X2 = f (X1, E’)

• :-) Structural constraints on f imply asymmetry

fX

E

Y

P(X) →X→

P(Y|X)

Y

⫫

Y = f (X, E)



Functional Causal Model

• Linear non-Gaussian acyclic causal model (Shimizu et al., 
‘06)

• Additive noise model (Hoyer et al., ’09; Zhang & 
Hyvärinen, ‘09b)

• Post-nonlinear causal model (Zhang & Chan, ’06; Zhang & 
Hyvärinen, ‘09a)

Y = a·X +E

Y = f(X) +E

Y = f2 ( f1(X) +E )

• A functional causal model represents effect as a function of 
direct causes and noise: Y = f (X, E), with X⫫E



(Conditional) Independence

• X⫫Y iff p(X,Y) = p(X)p(Y)

•or p(X|Y) = P(X): Y not informative to X

• X⫫Y | Z iff p(X,Y|Z) = p(X|Z)p(Y|Z)

•or, p(X|Y,Z) = p(X|Z): given Z, Y not 
informative to X

•Divide & conquer, remove irrelevant info... 

•By construction, regression residual is 
uncorrelated (but not necessarily 
independent !) from the predictor

Uncorrelatedness: E[XY] = E[X]E[Y]



Gaussian vs. Non-Gaussian 
Distributions

Laplace



Causal Asymmetry the Linear Case: 
Illustration

Data generated by Y = aX + E (i.e., X →Y):

EY



Super-Gaussian Case

Data generated by Y = aX + E (X →Y):

X

Y

X

Y Y

EX

X

E

X

EY



More Generally, LiNGAM Model
• Linear, non-Gaussian, acyclic causal model (LiNGAM) 

(Shimizu et al., 2006):

• Disturbances (errors) Ei are non-Gaussian (or at most one 
is Gaussian) and mutually independent

• Example:
X2 X3

X1

0.5

-0.2 0.3
E2 E3

E1
Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine 

Learning Research, 7:2003–2030.



Independent Component Analysis 

X1

Xm

observed 
signals

ICA system

output: as 
independent as 

possible

W… … Y1

Yn

de-mixing

estimate

A

… …s1

sn

unknown mixing system

independent 
sources

mixing

…

X = A·S Y = W·X

A

… …S1

Sn

unknown mixing system

independent 
sources

mixing

• Assumptions in ICA

• At most one of Si is Gaussian

• #Source <= # Sensor, and A is of full column rank
Hyvärinen et al., Independent Component Analysis, 2001

Then A can be estimated up to 
column scale and permutation 

indeterminacies

A
s1

s2

X1

X2



Intuition: Why ICA works?

• (After preprocessing) ICA aims to find a 
rotation transformation Y = W·X to making Yi 
independent

• By maximum likelihood log p(X|A), mutual 
information MI(Y1,...,Ym) minimization, 
infomax...

X1

X2

X1

X2

Y1

Y2

X1

X2

Y1

Y2

X1

X2

Y1

Y2



A Demo of 
the ICA 

Procedure







LiNGAM Analysis by ICA 
• LiNGAM:  

• B has special structure: acyclic relations

• ICA: Y = WX

• B can be seen from W by permutation and 
re-scaling

• Faithfulness assumption avoided

• E.g.,

X2 X3

X1

0.5

-0.2 0.3

So we have the causal 
relation:W

⇒  E = (I-B)X



LiNGAM Analysis by ICA 
• LiNGAM:  

• B has special structure: acyclic relations

• ICA: Y = WX

• B can be seen from W by permutation and 
re-scaling

• Faithfulness assumption avoided

• E.g.,

X2 X3

X1

0.5

-0.2 0.3

So we have the causal 
relation:W

⇒  E = (I-B)X

Question 1. How to find W?

Question 2. How to see B from W?



LiNGAM Analysis by ICA 
• LiNGAM:  

• B has special structure: acyclic relations

• ICA: Y = WX

• B can be seen from W by permutation and 
re-scaling

• Faithfulness assumption avoided

• E.g.,

X2 X3

X1

0.5

-0.2 0.3

So we have the causal 
relation:W

⇒  E = (I-B)X

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ.
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’.
3. 



Can You See Causal Relations 
from W? Example

• ICA gives Y = WX and

• Can we find the causal model?

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ.
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’.
3. 
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by its diagonal entry, giving Ẅ’.
3. 
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• Can we find the causal model?
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Can You See Causal Relations 
from W? Example

• ICA gives Y = WX and

• Can we find the causal model?

1. First permute the rows of W 
to make all diagonal entries 
non-zero, yielding Ẅ.
2. Then divide each row of Ẅ 
by its diagonal entry, giving Ẅ’.
3. 



Faithfulness Assumption Needed?

health 
condition

• One might find independence between health condition & risk of 
mortality. Why?

mortality 
risk

healthy 
lifestyle

-

- -

• E.g., if a=-bc, then health_condition ⫫ mortality_risk, which 
cannot by seen from the graph!

• No faithfulness assumption is needed in LiNGAM

• Minimality (a zero coefficient corresponds to edge absence) is 
sufficient

a
b c X

Y Z

Possible to have 
Y ⫫ Z | X ?



Some Estimation Methods for 
LiNGAM

• ICA-LiNGAM

• ICA with Sparse Connections 

• DirectLiNGAM...

Shimizu et al. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine 
Learning Research, 7:2003–2030.

Zhang et al. (2006) ICA with sparse connections: Revisited. Lecture Notes in Computer Science, 
5441:195–202, 2009

Shimizu, et al. (2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural 
equation model. Journal of Machine Learning Research, 12:1225–1248.

*
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Application: Causal diagram in HK Stock 
Market (Zhang & Chan, 2006)

1. Ownership relation: x5 
owns 60% of x8; x1 
holds 50% of x10.

2. Stocks belonging to the 
same subindex tend to 

be connected.

3. Large bank companies 
(x5 and x8) are the 

cause of many stocks.

4. Stocks in Property 
Index (x1, x9, x11) 
depend on many 
stocks, while they 

hardly influence others.



LiNGAM-based methods by causal-learn

• ICA-based LiNGAM: Linear Non-Gaussian

• DirectLiNGAM: Linear Non-Gaussian

• VAR-LiNGAM:Time series

• RCD: Hidden confounders

• CAM-UV: Nonlinear additive noise



LiNGAM-based methods by causal-learn



• We have seen the linear non-Gaussian case.

• How about nonlinearity?



From MECs to DAGs (2)

•Additive Noise Model

•Post Non-Linear Model



Some Real Data Sets



Functional Causal Models

• Effect generated from cause with independent noise (Pearl et al.):           

• A way to encode the intuition “the generating process for X is ‘independent’ 
from that generates Y from X”

• :-( Without constraints on f, one can find independent noise for both 
directions (Darmois, 1951; Zhang et al., 2015) 

• Given any X1 and X2, E’ := conditional CDF of X2 | X1 is always independent from 
X1 and X2 = f (X1, E’)

• :-) Structural constraints on f imply asymmetry

fX

E

Y

P(X) →X→

P(Y|X)

Y

⫫

Y = f (X, E)



Causal Asymmetry with Nonlinear 
Additive Noise: Illustration 

X

Y

Y = f(X) +E with E⫫X

(Hoyer et al., 2009)



Additive Noise Models by causal-learn



Three effects usually encountered in a causal 
model (Zhang & Chan, 2006; Zhang & Hyvärinen, ‘09a)

• Without prior knowledge, the assumed model is expected to be 
• general enough: adapt to approximate the true generating process 

• identifiable: asymmetry in causes and effects       

• Represented by post-nonlinear causal model with inner additive 
noise



PNL Causal Model

• Special cases: 

• Linear models

• Nonlinear additive noise models

• Multiplicative noise models: 

Xi = fi,2 ( fi,1 (pai) + Ei)

Finished square feet

linear or nonlinear?



with PNL Model
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Identifiability in Two-variable Case: 
Theoretical Results

• Two-variable case: if X1→X2, then X2 = f2,2 ( f2,1 (X1) + E2)

• Is the causal direction implied by the model unique?

• By a proof of contradiction

• Assume both X1→X2 and X2→X1 satisfy PNL model 

• One can then find all non-identifiable cases

Xi = fi,2 ( fi,1 (pai) + Ei)



Identifiability: A Mathematical Result



List of All Non-Identifiable Cases



List of All Non-Identifiable Cases



Post-nonlinear Models by causal-learn



Take-Home Message: Causal Discovery 
with Nonlinear Functional Causal Models

• Functional causal models naturally describe the causal 
processes

• Can we use them to distinguish cause from effect?

• Certain types of constraints on f are needed to guarantee the 
identifiability of the causal direction

• Nonlinearities are encountered frequently and should be 
considered

• Trade-off of generality & identifiability

• Limitation: more than one noise term? large-scale problems?



More Practical Issues

•Nonlinear Relations

•Measurement Error

•Selection Bias

•Missing data

•Nonstationarity

•…



Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & Hyvärinen, 

UAI’09; Huang et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Zhang et al., UAI’16) 

• Confounding (SGS 1993; Hoyer et al., 2008; Zhang et al., 2018c)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., 
ECML’09; Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., 
ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, 
Ghassami et al., NIPS’18; Huang et al., ICML’19) 

discretized 
values

data uncertainty
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• Selection bias (Zhang et al., UAI’16) 

• Confounding SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19); latent causal 
representation learning (Silva et  al., JMLR’06; Xie et al., NeurIPS’20; Cai et al., NeurIPS’19; Adams et al., 
NeurIPS’21)

• (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19)
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ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)
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• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, 
        



Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & Hyvärinen, UAI’09; Huang et al., 

KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Spirtes 1995; Zhang et al., UAI’16) 

• Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19); latent causal 
representation learning (Silva et  al., JMLR’06; Xie et al., NeurIPS’20; Cai et al., NeurIPS’19; Adams et al., 
NeurIPS’21)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., ECML’09; Hyvarinen et 
al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, Ghassami et al., 
NIPS’18; Huang et al., ICML’19 & NIPS’19; Huang et al., JMLR’20) 

nonstationarity



Summary: Practical Issues in Causal 
Discovery

•Latent confounders, cycles, nonlinearities (and even mixed 
data types), measurement error, selection bias, missing 
values, nonstationarity…

•Don’t worry—look into the problems

•Learning latent confounders and their relations!



Causal Representation Learning: 
Recovery of the Hidden World

•Why causal/disentangled representations ? 

•How?

•IID case

•Linear-Gaussian case

•Linear, non-Gaussian case

•Nonlinear case

•From multiple distributions

•With temporal information



• Causal system has “irrelevant” modules (Pearl, 2000; Spirtes et al., 1993)

• Causal discovery (Spirtes et al., 1993)/ causal representation learning (Schölkopf 
et al., 2021): find such representations with identifiability guarantees

• Three dimensions of the problem:

Uncover Causality from 
Observational Data?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes

rain

wet_ground
slippery

- conditional independence among variables;
- independent noise condition;
- minimal (and independent) changes…

Footprint of causality in data



Causal Representation Learning: A Summary

i.i.d. data? Parametric 
constraints?

Latent 
confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence class

Yes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes
Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes
May have unique 

identifiability

No
Yes

Changing subspace 
identifiable

Yes
Variables in changing 
relations identifiable



A Problem in Psychology: Finding Underlying 
Mental Conditions?

•50 questions for big 5 personality test 



Learning Hidden Variables & Their Relations

Latent variables & 
their causal structure

• Find latent variables Li and their causal relations ?

• Rank deficiency or GIN helps solve the problem

• Measured variables (e.g., answer scores in psychometric questionnaires) 
were generated by causally related latent variables

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes



Outline
•Why causal/disentangled representations ? 

•How?

•IID case

•Linear-Gaussian case

•Linear, non-Gaussian case

•Nonlinear case

•From multiple distributions

•With temporal information
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Linear, Gaussian Case: With Rank 
Deficiency Constrains

- Huang, Low, Xie, Glymour, Zhang, “Latent Hierarchical Causal Structure Discovery with Rank Constraints, NeurIPS 
2022



Necessary & Sufficient Conditions on the 
Structure: Linear, non-Gaussian case

- Allow a large number of 
latent variables

- Estimation is generally 
difficult

Identifiable graphs with only 3 measured variables

- Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the 
Non-Gaussian and Heterogeneous Cases,” NeurIPS 2021

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes
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Estimating Latent Hierarchical Structure
i.i.d. data? Parametric 

constraints?
Latent 

confounders?
Yes No No

No Yes Yes

- Xie, Huang Chen, He, Geng, Zhang, “Estimation of Linear Non-Gaussian Latent Hierarchical Structure,” ICML 2022
- Huang, Low, Xie, Glymour, Zhang, “Latent Hierarchical Causal Structure Discovery with Rank Constraints, NeurIPS 

2022
- Adams, Hansen, Zhang, “Identification of Partially Observed Linear Causal Models: Graphical Conditions for the 

Non-Gaussian and Heterogeneous Cases,” NeurIPS 2021



Outline
•Why?

•How?

•IID case

•Linear-Gaussian case

•Linear, non-Gaussian case

•Nonlinear case

•From multiple distributions

•With temporal information
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X1
L1

L2

X2

X3

X1
L1

L2

X2

X3

X

a

b c

a

b
c

ƛ

Generalized Independent 
Noise Condition (GIN)

L3

X1
L1

L2

X2

X3 X4

X5

X6

Z = {X1}      Y = {X2, X3}
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• Generalized Independent Noise (GIN) Condition:

,

• Graphical criterion

follows the GIN condition iff
there is an exogenous set S of PA(Y) that 
blocks all paths between Y and Z, where 
0<=|S|<=min(|Z|, |Y|-1) 

where

follows the GIN condition

Xi: observed variables
  Li: latent variables

Linear, Non-Gaussian Case: GIN



Step 1: find causal clusters

178

Step 2: determine causal structure of 
the latent variables

• A two-step algorithm to identify the latent variable graph
- By testing for GIN conditions over the input X1, ···, X8

satisfies GIN condition
satisfies GIN condition

Cluster 3 Cluster 1 & 3

Cluster 1

Cluster 2

Cluster 3

GIN Condition for Estimating Linear Non-
Gaussian Latent Graphs



GIN-Based Method: Application to Teacher’s 
Burnout Data

• Contains 28 measured variables 

• Discovered clusters and causal order of 
the latent variables:

• Consistent with the hypothesized model

(from root to leaf)

Hypothesized model by experts

- Xie, Cai, Huang, Glymour, Hao, Zhang, "Generalized Independent Noise Condition for Estimating Linear Non-Gaussian 
Latent Variable Causal Graphs," NeurIPS 2020 

- Cai, Xie, Glymour, Hao, Zhang, “Triad Constraints for Learning Causal Structure of Latent Variables,“ NeurIPS 2019



Outline
•Why?

•How?

•IID case

•Linear-Gaussian case

•Linear, non-Gaussian case

•Nonlinear case

•From multiple distributions

•With temporal information
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Outline
•Why? 

•How?

•IID case

•Linear-Gaussian case

•Linear, non-Gaussian case

•Nonlinear case

•From multiple distributions

•With temporal information



Nonlinear ICA with Multiple Domains
i.i.d. data? Parametric 

constraints?
Latent 

confounders?
Yes No No

No Yes Yes

•Nonlinear ICA: observed variables follow X = g(Z), in which Zi are 
mutually independent 

•Solutions to nonlinear ICA high non-unique

•If the dstr of each Zi change across multiple domains, generally their 
are identifiable (up to component-wise transformations)

•Why?

- Hyvärinen, Pajunen, Nonlinear independent component analysis: Existence and uniqueness results. Neural 
networks, 1999.

- Hyvarinen, Sasaki, Turner, “Nonlinear ICA using auxiliary variables and generalized contrastive learning,” In 
The 22nd International Conference on Artificial Intelligence and Statistics, 2019.

𝜃𝜃1 Z1

𝜃𝜃2 Z2
for 𝐙𝐙′ = ℎ(𝐙𝐙):

X1

X2
𝐠𝐠

𝜃𝜃1 Z’1

𝜃𝜃2 Z’2

X1

X2
g𝐠𝐠′
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Finding Changing Hidden Variables for Transfer 
Learning

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes

• Underlying components 𝐙𝐙𝑆𝑆 may change across domains

• Changing components 𝐙𝐙𝑆𝑆 are identifiable; invariant part 𝐙𝐙𝐶𝐶 are identifiable up to its 
subspace

• Using invariant part 𝐙𝐙𝐶𝐶 and transformed changing part 𝐙𝐙
˜
𝑆𝑆 for prediction

- Kong, Xie, Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022

g𝐙𝐙𝑆𝑆
𝐙𝐙𝐶𝐶

𝐗𝐗



Finding Hidden Variables With Changing 
Relations

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes

• With sparsity of the graph over the estimated variables 𝑍𝑍
˜
𝑖𝑖, with a suitable 

permutation over them, 𝑍𝑍
˜
𝑖𝑖 is a function of 𝑍𝑍𝑖𝑖 and all 𝑍𝑍𝑗𝑗 that are adjacent to 𝑍𝑍𝑖𝑖 and 

all the other neighbors of 𝑍𝑍𝑖𝑖 in the Markov network

• Recovered DAG and the original DAG have the same topology

• 𝜃𝜃𝑖𝑖 can be recovered up to component-wise invertible transformations; so roughly 
speaking, 𝑍𝑍𝑖𝑖 can be recovered

- Ongoing work



Outline
•Why? 

•How?

•IID case

•Linear-Gaussian case

•Linear, non-Gaussian case

•Nonlinear case

•From multiple distributions

•With temporal information





Learning Latent Causal Dynamics

Latent processes
Recovered latent 

processes

Latent temporal causal 
processes zit can be recovered if 
they follow

- completely 
nonparametric model; or 
furthermore,

- non-stationary noise; or 
- non-stationary causal 

influence, or 
- Parametric constraints 

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No

No Yes Yes

Learn the underlying causal dynamics from 
their mixtures?

“Time-delayed” influence renders latent 
processes & their relations identifiable

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” 

ICLR 2022



Comparisons
i.i.d. data? Parametric 

constraints?
Latent 

confounders?
Yes No No

No Yes Yes

Learn the underlying causal dynamics from 
their mixtures?

“Time-delayed” influence renders latent 
processes & their relations identifiable

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” 

ICLR 2022



Results on Video Data 

•For easy interpretation, consider two simple video data sets

KiTTiMask
Video

Learned 
latent processes

(Movement 
in a direction)

(Movement in an 
orthogonal direction)

(Size)

Interpretation

•KiTTiMask: a video dataset 
of binary pedestrian masks

•Mass-spring system: a video 
dataset with ball movement 
and invisible springs

Mass-spring
Video

Learned 
latent processes

Interpretation

(x- & y- 
coordinates

 of the 5 balls)

- Yao, Chen, Zhang, “Learning Latent Causal Dynamics,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” 

ICLR 2022









Causal Representation Learning: A Summary

i.i.d. data? Parametric 
constraints?

Latent 
confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence class

Yes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes
Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes
May have unique 

identifiability

No
Yes

Changing subspace 
identifiable

Yes
Variables in changing 
relations identifiable



Summary

•Essential to learn hidden causal variables in many cases!

•Possible to achieve even in the IID case

•Benefit from distribution changes and temporal 
information

•Future work

•Efficient procedure?

•Necessary and sufficient identifiability conditions?

•Changing relations among hidden variables?
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